
LEARNING STRllCTURAL DESCRIPTIONS OF GRAMMAR RULES FROM EXAMPLES

Robert C. Berwick
Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02l?9

This paper describes a LISP program that can learn English syntactic rules. The key idea is that the
learning can be made easy, given the right initial computational structure: syntactic knowledge is separated
into a fixed JIlterpreter and a variable set of hig'hly constrained pattern-action grammar rules. Only the
grammar rules are learned, via induction from example sentences presented to the program. The
interpreter is a Simplified version of Marcus's parser for EnglIsh [1], which parses sentences without backup.
The currently Implemented program acquires about 701. of a SImplified core grammar of English. What
seems to make the Illductjon easy is that the rule structures and their actions are highly constrained: there
are only four actions, and they manipulate only very local parts of the parse tree.

1. INTRODUCTION

A n important goal of modern linguistic theory is to show
how learning a grammar can appear to be so easy, given
the poor quality of the data children receive. This paper
reports on a currently running LISP program which, by
computationally embodying some theories of
transformational grammar, can learn syntactic rules in the
manner of Winston's blocks world program [2J. The
program proceeds by examining example sentences to
modify its descriptions of grammar rules that make up part
of its knowledge about language.

The key idea is that learning syntactic transformations is
easy, given the right mitial computational structure. This
program uses as initial structure a Simplified version of
Marcus's PARSIFAL [1J, a parser for English which is an
interpreter. for grammar rules of a particularly simple
production rule form. The basic operation of the interpreter
is taken as fixed, corresponding to an intia1 set of
computational abilities. Only grammar rules are learned.

)I:

This research was conducted at the Artificial Intelligence
Laboratory of the Massachusetts InstItute of Technology.
Support for the Laboratory's artificial intelligence research is
provided in part by the Advanced Research Projects Agency
of the Department of Defense under Office of Naval
Research contract number N00014-7S-C-0643, and in part
by NSF Grant MCS77-0482B.

Because the rules themselves are so Simple, and
operation of the interpreter so constrained, bugs have
diameter-limited location. Further, the parser itself
strictly deterministic; that is, already-bUilt portions of
parse tree are assumed correct, and there is no backup.
shown below, these assumptions are crucial in the
of the learning algorithm.

More specifically, the Marcus interpreter uses the f
data structures.: A parse tree, a syntactic representation
the input sentence. The lowest, right-most node of the
under construction is called the current active
denoted C. A buffer of three (to five) cells that h
words from the input sentence or as yet not
analyzed phrases. Phrase structure rules that are used
turn on and off logICally grouped sets of grammar rules (
example, the rule would first activate
grammar rules that start sentences, then turn off that
and activate noun phrase rules)' The phrase
control system was designed by Shipman [3]. :.-P.:..::.;::.:::..::.:=
rules (also called grammar rules) of the form: IF
THEN <acrion). Each <action) does the actual work
building the parse tree, attaching words or phrases from
buffer onto the parse tree, moving new words into
buffer, and so forth. <Patlans) determine if the gi
action is to fire; if the pattern given in a grammar
matches the pattern 10 the buffer, the specified
takes place.(Patterns use common lexical features like N
phrase, Singular or Verb, transitive.)

56

The learning program acq uires only the patterns and actions
of the grammar rules. One of the accomplishments of this
research has been to simplify the ong'inal Marcus parser to a
pOint where there are only four valid actions: ATTACH
first buffer item to C j SWITCH fIrst and second buffer
items; INSERT a specific lexical item into the first buffer
slot; and INSERT·TRACE into first buffer slot. (Traces
are not further discussed in this paper but function as in
Chomslo/'s theory j see Fiengo [4J for discussion.)

Learning proceeds by induction on the <patterns) and
<actions), but with an important constraint: children (and
this program) do not appear to receive negative data
examples on what is not a sentence (see Brown and Hanlon
[SJ and Anderson [6J for discussion). On the other hand,
children (and this program) do appear to receive
reinforcement on what is a semantically meaningful
sentence. Therefore, the current program does assume a
lexicon and selectional restrictions on the phrase-structure
categories (for example, that Mary is a noun and can ,fit
under a noun phrase). More advanced versions of the
program will probably have to assume a known case-frame
representation for the input sentence given (fillmore [1]),
but this has not yet been found to be necessary j a recent
result obtained by Wexler [8] proves mathematically that,
given a transformational grammar to be learned and only
surface sentences as input, a recursive learning procedure
for the grammar does not exist (this was shown by Gold
[9J), but that such a procedure does exISt if surface
sentences are paired with some representation of the
underlying meaning of the sentence.

2. THE LEARNING PROCEDURE

The learning program starts with an interpreter,' a leXicon,
simple phrase-structure rules, selectional restrictions, but no
grammar rules. The program is then given input sentences
to parse. If it gets stuck in a parse-- if no current rule
patterns match or if all current rules cause selectional
errors-- then the program attempts to build a new grammar
rule that will apply at that point. It does this by trying
each of its possible actions in turn: attach, switch. insert.
insert-trace. (This ordering was found empirically.) The
first action that succeeds in satisfying the selectional
restrictIOns is sa ved along with the current machine state
(buffer plus current active node) as the pattern; this
becomes the new rule. If no possible generated rule has
worked, the actIve phrase structure rule is assumed to be
optional. finally, rules with common actions within a
phrase-structure group have their patterns continually
generalized via intersection.

57

3. AN EXAMPLE: AUXILIARY-INVERSION

Suppose that at a certain point the program has all and only
the grammar rules necessary to build a parse tree for Mary
did hit the ball. The program now gets as input, Did Mary
hit the ball? No rule currently known can fire, for in the
ph rase structure packet S activated at the beginning of a
sentence, the only rules have the pattern [=Noun
PhraseJ[=VerbJ, and the buffer holds the pattern [=Did:
auxerb][=Mary: NOlin]. A new rule must be written, so the
program tries each of its possible rule actions 111 turn.
Attach fails because of selectional restrictions; did can't be
attached as a noun phrase. But Switch works, because
when the first and second buffer pOSitions are switched, and
the buffer now looks like [=mary][=did], an existing rule for
parsing declarative sentences can match. The rest of the
sentence is parsed as If it were a declarative. finally, the
switch rule is saved along with the current buffer pattern as
a trig'l'er for the next case of auxiliary inversion. It is
cruei;!' to notice that the debugging is strictly local: the
error IS assumed to lie ex actly where the error first occurred,
and not in some other rule. At most one new rule is added
or one old rule modifted with each example sentence, a kind
of incremental debugging that is analagous to Sussman's
debugging almost right programs [10J. In this regard it is
important to point out that Wexler has proved [8J that local
debug'ging is apparently a necessary condition for the
learning' of a transformational g'rammar.

The currently implemented LISP version of this procedure
has acqUired about 70% of a "core-grammar" of English
ong'wally developed for the Marcus parser, as well as some
new rules; acquired rules include unmarked-order,
auxiliary inversion, imperative, simple there-insertion, to-
mfin itive, do-support, and some passives. On the other
hand, rules for parsing the complicated complement
structure of English have yet to be learned, nor is it clear
how they might be. Future work will consider a
straightforward way to learn the phrase structure rules
then;selves, by generalizing templates of phrase structure
rules accordmg to Chomsky's X-bar theory (jackendoff
[11]). The relationship between the local debugging
constraints assumed by the learning procedure and those
constraints found necessary by Wexler [8] witl also be
in vestigated.

ACKNOWLEDGEMENTS

SpeCIal thanks are of course due to Mitch Marcus, whose
thesis and advice forms the foundation of this work, and to
the linguistic expertise of Candy Sidner and Beth Levin.

REFERENCES

[1] Marcus, M., "A Computational Account of Some
Constraints on Language," in proceedmgs of Theoretical
Issues in Natural Language Processing (July 1918;
TrNLA P-2), pp. 236-246.

[2] Winston, P., "Learning Structural Descriptions from
Examples," in P. Winston, editor) The Psychology of
Computer ViSion, New York: McCraw-Hill,1975.

[3] Shipman, D., and Marcus, M., "Towards Minimal Data
Structures for Parsing," Proc. IjCAP9, Tokyo, Japan,
1979.

[4] fiengo, R., "On Trace Theory," Linguistic Inquir'j 8:1
(1977), pp. 35-61.

[5] Brown, R., and Hanlon, C.,"Derivational Complexity
and Order of Acquisition in Child Speech", in JR. Hayes,
ed., Cognition and the Development oj Language, New York:
10hn Wiley and Sons, 1970.

[6] Anderson, 1. R., "Induction of Augmented Transition
Networks", Cognitive SCience, 1, (1977) pp.125-157.

[7] fillmore, C.l., "The Case for Case", in Bach, E., and
Harms, R.T., editors, Universals in Linguistic Theor'j, New
York: Holt, Rinehart, and Winston, 1968.

[8] Wexler, K., "Transformational Grammars are Learnable
from Data of Degree Less than or Equal to Two," SOCial
Sciences Working Papers, School of Social Sciences,
University of California, IrVine, 1977.

[9] Gold, LM., "Language Identification in the Limit,"
InJormation and Control, 10 (967) pp. 447-414.

[10] Sussman, G., A Computational Model of Skill
Acquisition, Ameriean Elsevier, 1975.

[11] Jackendoff, R., X-bar Syntax: A Stud'j of Phrase
Structure, Cambridge, Mass: MIT Press, 1977.

58

