
Robert C. Berwick

MIT Artificial Intelligence Laboratory, Room 820
545 Technology Sq., Cambridge. MA 02139

ABSTRACT
This paper is a progress report on a scries of three significant

extensions to the original parsing design of (Marcus J980).* The
extensions are: Ihe range of syntactic phenomena handled has been
enlarged, encompassing sentences with Verb Phrase deletion,
gapping, and rightward movement, and an additional output
representation of anaphor-antcccdcnt relationships has been added
(including pronoun and quantifier interpretation). A complete
analysis of the parsing design has been carried out, clarifying the
parser's relationship to the extended I R(k,t) parsing method as
originally defined by (Knuth 1965) and explored by (Szymanski
and Williams 1976). The formal model has led directly to the
design of a "stripped down" parser that uses standard LR(k)
technology and to results about the class of languages that can be
handled by Marcus-style parsers (briefly, the class of languages is
defined by those that can be handled by a deterministic, two-stack
push-down automaton with severe restrictions on the transfer of
material between the two sucks, and includes some strictly
context-sensitive languages).

1 EXTENDING THE MARCUS PARSER

While the Marcus parser handled a wide range of everyday
syntactic constructions, there are many common English sentences
that it could not analyze. One gap in its abilities arises because it
did not have a way to represent the possibility of rightward
movement - that is, cases where a constituent is displaced to the
right:

A book [about nuclear disarmament] appeared yesterday. -->
A book appeared yesterday [about nuclear disarmament].

Further, the only way that the Marcus parser could handle leftward
movement was via the device of linking a "dummy variable" (a
trace) to an antecedent occurring somewhere earlier in the sentence.
For instance, the sentence, "Who did Mary kiss?" is parsed as, Who
did Mary kiss trace!, where trace is a variable bound to its "value"
of who, indicating the intuitive meaning of the sentence, "For which
X, did Mary kiss X" .

Jn the original parser design, a trace was of the category NP, so
that only Noun Phrases could be linked to traces. But this meant
that sentences where other than NPs are displaced or deleted cannot
be analyzed. This includes the following kinds of sentences, where
deleted material is indicated in square brackets.

Gapping:
Max gave Sally a nickel, and Harvey [gave Sally] a dime.

•This paper reports work done at the Artificial Intelligence laboratory of the
Massachuselts Institute of Technology Support for ihe laboratory's artificial
intelligence research is supported in pan by the Advanced Research Projects Agency
of the Department of Defense under Office of Naval Research contract
NOO14-80-C-0505.

VP deletion:

John kissed Mary, and I think that Frank said that Mary thought
that Marry would have [kissed Mary] too.

The new parser is also designed so as to account for the
ill-formedness of certain sentences related to these, such as the
"gapped" sentence,

John hit Mary and I don't believe Bill [hit] Sue.
The new design actually explains why gapping is bounded in a way
that VP deletion is not. Finally, since languages such as German
arguably contain rules that move Verbs (the German "Verb
Second" rule; see (Thiersch 1978). an extension to the trace system
is demanded here as well.

The last class of new cases to be handled includes the encoding
of information not dealt with in the original Marcus parser, that of
oven anteccdent-anaphor binding. Such sentences include:

Reciprocals:
They think that feeding each other would be dangerous.
(They-each other}

Pronouns:
John thinks that he is wonderful.
{John = he. under one interpretation}
His mother likes John.

How can we begin to attack these cases? Let us consider
rightward movement first. It is a simple descriptive fact about such
sentences that the moved constituent has been displaced from its
"normal" location. By analogy with the case of leftward
movements, the obvious first tack is to place a variable in the
position from which the constituent has been moved, and then bind
that variable to the appropriate constituent appearing to its right:

A book [t] appeared yesterday about nuclear disarmament.
This solution is not quite correct, however, since it fails to explain a
key property about rightward movement (in Fnglish): unlike
leftward movement, it is restricted to the domain of a single
S(cntcncc). But if right- and leftward movements were determined
by the same mechanism, there should be no such asymmetry, all
other things being equal. However, there is solution within the
framework of the deterministic Marcus parser that accounts for this
asymmetry. Since the constituents "a book" and "a book about
nuclear disarmament" arc both completely well formed, there is no
way for a deterministic parser to be able to record the possibility
that "a book" may be lacking a complement ("about nuclear
disarmament") unless there is explicit evidence in the input stream
within a bounded distance of the NP a book". This is because all
rules in the parser must be stated in a finite " IF -THEN" format that
can make reference to at most three constituents of look-ahead
information, a bound that prohibits one from moving "about
nuclear disarmament" too far to the right. Ihe idea, then, is that
instead of adding a variable [t] to the NP "a book", we simply flag

R. B e r w i c k 711

the NP with the diacritic "+r ightmoved" if there is explicit
evidence in the look-a head buffer that this is correct. This flag
indicates that the argument structure of the NP is not yet complete
(it lacks a complement). Observe that in the case above the
lookahcad buffer can contain a proper triggering pattern, since at
the time "a book" must be marked, the first cell in the buffer will
contain "appeared", the second, "yesterday", and the third,
"about". (More generally, a complete NP as discussed in (Marcus
1980) could reside in the second lookahcad cell, and the a PP in the
third. Note that the type of the PP will determine whether it is a
possible complement of the Subject NP.) Then, when the PP
complement is encountered and parsed, it is literally attached to the
NP that is so flagged. (Note that this is in contrast to the "trace"
solution, where variable binding is used to effect the "restoration"
of initial argument structure. Here, the NP is "reconstructed".)

What of sentences with deleted Verb Phrases or "gapped"
constituents? Again, the key distinction is that "gapping" is
bounded in a way that VP deletion is not (as illustrated by the VP
deletion sentence above where the deleted VP "kissed Mary" can be
arbitrarily far from its copy). A "gapped" constituent, in contrast, is
locally detectable, and so we can attempt to formulate local
IF-THEN grammar rules to handle it. Importantly, there appear to
be constraints on natural grammars that prohibit identical gapped
constructions that could have been derived from two different
underlying sources -- just what is needed in order to accommodate
these examples in a deterministic parser. Further, it seems that
gapped constituents must lie at the left or right periphery of
complete sub-trees. For a discussion of these constraints, see
(Hankamer 1973). Lack of space prevents a complete description of
this rule system here, but to take just one example, consider the
following sentence (along with its underlying form):

Max gave Sally a nickel yesterday, and [Max gave Sally]
a dime today.

The parser will analyze the first part of the conjunct, up to the
"and", as a complete S. Next, "and" will be pushed onto the
parser's stack, delaying the decision as to what to do until we look at
material in the input buffer. At this point, the lexical items "a
dime" in the input buffer triggers the analysis of an NP (note that
"today" unambiguously marks the end of the NP). Following the
Marcus parser design, this NP is returned to the input buffer, which
now contains NP in its first cell, "today" in its second, and an end of
sentence marker in its third cell. (Recall that in general the buffer is
limited to contain just three items.) But the coordination structure
"S and S" demands that a full S (NP VP) be found. The periphery
constraint, in turn, requires that the deleted material form lie at the
left or the right of "NP today", forming a complete subtree. This
means that the only possible choices arc [...] NP today or NP today
[...] where [...] together with "a dime today" forms an S. But since
the sequence NP today [...] is known not to form an S, the only
remaining choice is (...) NP today. That is, the parser inserts a [e]
constituent into the first position of the buffer and takes [e] NP
today as forming an S. The interpretation of the [c] is left for a
second stage of processing.

It is interesting to contrast this example with comparable VP
deletion sentences. The deleted VP can be arbitrarily far away from
its copy, but not the gapped constituent:

??Max gave Sally a nickel yesterday, and John thought that Mary
believed a dime today.

Max gave Sally a nickel yesterday, and John thought
that Mary believed that Bill did too.

The point is that by abiding by observable linguistic constraints, we
can actually design a parser to efficiently handle the sentences of a

natural language. (Conversely, the demand that sentences be
efficiently parsable at least suggests a "functional" explanation for
dicsc kinds of constraints and evidence for deterministic parsing.
However, this possibility must remain a suggestion, since the
constraints are not necessary for efficient payability.)

Observable differences in behavior indicate then mat a parser
should use different techniques to handle gapping and VP deletion.
VP deletion cases are always unambiguous, in the sense that it is
always clear when a VP is to be inserted into a sentence - every
(Fnglish) sentence requires a VP. For instance, this means that
given the sentence,

John kissed Mary, and 1 think that Frank said that Mary
diought that Harry would have too.

a VP may be inserted by the parser after the words "would have"
because, using its lookahcad buffer, the parser can see that there is
no VP present (as indicated by the triggering word "too"). Thus
one can write an l l -TPIKN grammar rule based on just local
context to handle the surface parsing of dicsc cases. It is precisely
this property that pennies VP deletion to be unbounded. (In
contrast, the parse of a "gapped" construction demands that one
examine the left-context of the parse to determine how to proceed.)
This grammar rule inserts a VP into the sentence after "would
have", without specifying any relationship between that VPand any
previous VP. The actual interpretation of tje deleted VP is carried
out in a second stage of analysis, described immediately below.
(The approach follows that described by (Williams 1977).)

Finally, the new parser is designed to compute a representation
of general anaphoric relationships. It docs this by implementing a
restricted version of co-indexing, adding a pointer from an anaphor
to a representation of an antecedent NP. The implementation is a
restricted one because the pointer is directed: if there is a link from
X to Y. then X is dependent on Y, in the sense of referential
dependency. For example, given the sentence,

John thought that he liked Nixon.
One desired output representation (in co-indexed format) is:

John-I diought that he-1 liked Nixon,
in its dependency implementation, the notation "he - I " means
simply that a pointer is set up linking "he" to the representation of
the NP "John". "He" is dependent on "John" in the sense that any
properties attributed of "John" are automatically inherited by "he,"
but not necessarily vice versa. (For discussion of some of the
advantages of a "dependency" representation over the more
conventional scheme of simply selling the "values" of the NP
antecedent and its anaphor to be equal, see (Higgenbotham 1982).)
Observe that dependency links give only possible connections
between items, not necessary connections; "he" can always be
dependent on some discourse NP not mentioned in the sentence.

'Ihe constraints that dependency " l inking" obeys have been
explored in depth in recent years in syntactic theory and will not be
covered here. Briefly, an antecedent can be linked to a pronoun if
the pronoun is "free" in a certain local constituent domain. So for
example, "he" is free in the domain [that he liked Nixon], and
hence can be dependent on "John" outside this domain. In
contrast, " h i m " and "B i l l " must be distinct (i.e., " h i m " cannot
depend on "B i l l ") in "Bi l l knows h im". Note that the constraint
cannot be that a pronoun must appear after an antecedent, since we
can have " h i m " and "John" dependent in,

The guy who knows him likes John.
The local constituent domain definition works here though, since
"he" is free in "who knows h i m " and thus is available for
dependency l inking to "John".

How are potential dependents calculated? Briefly, the
procedure is to maintain an unordered set of previously

712 R. Berwick

encountered NPs, partitioned according to the agreement features
of person, number, and gender. The set is updated as local
constituent domains are constructed by the (syntactic) parser.
Potential antecedence is encoded by adding a pointer from the
pronoun to the set. after checking for agreement. For example,
consider the sentence:

John gave the bill to him, and then he left.
The first "local domain" relevant to pronoun linking is the sentence,
"John gave the bil l to him". The list of antecedent NPs is empty.
On encountering "h im" , the program links "h im" to it. (No
compatibility violations arc found since the set is empty.) Thus
"h im" has an emptv antecedent with respect to this sentence, the
correct result. If previous sentences has established discourse NPs,
then "h im" could be linked to a set of these. Next, on encountering
"and then" in its input buffer, the parser notes mat the local domain
(the S) has been completely built. Therefore, the two NPs "John"
and "h im" arc added to the appropriate candidate antecedent set
"John" and "he" remain in the same partition, since they agree in
terms of defined features. Finally, during the analysis of the
sentence, "he left" the parser again links a pronoun, "he" to the
only antecedent set, correctly encoding the possibility that cither
"he" = John or "he" = "h im" (- some unspecified discourse NP).
Note that these alternatives are left implicit in the set description,
thus avoiding the computational complexity of "writ ing out" all the
possibilities. Given this approach, it can be shown that the full
syntactic analysis and linking algorithm runs in polynomial time
(see (Berwick and Weinberg, 1983, forthcoming).)

Finally, in passing it should be noted that the revised parsing
machinery permits one to extend the parser to handle other
languages, e.g., German, using the "Move verb" analysis proposed
by (Thiersch 1978). The details of this work arc reported in (Lester
1982).

11 F O R M A L CHARACTERIZATION

The Marcus parser incorporated a number of interesting design
features: the use of a lookahead buffer based on constituents (whole
phrases) and not just words: the interweaving of top-down
prediction of syntactic categories (as in an ATN) with bottom-up
recognition: the use of "attention shifting" to delay the immediate
analysis of some constituents; and panern-action grammar rules
grouped into packets. However, its informal characterization (as a
set of grammar rules plus interpreter) has made it difficult to see
just what class of languages could be handled by such a machine
and what its computational complexity is. It is possible to take these
program design features and formally model them, reducing the
machine to a more well-known class of devices. To summarize this
reduction here: (1) constituent lookahead follows precisely the
notion of LR(k.t) parsing, as defined by (Knuth 1965) where t — the
number of left-inost complete subtrees that can be used in the
lookahead. (2) 'The use of top-down prediction in such a parser docs
not change its basic bottom-up completion of phrases, as established
by (Hammer 1974). This means that top-down prediction docs not
really affect the class of languages that this type of parser can
handle. (3) I.R(k.t) parsers can be modeled as two-stack automata,
i.e., an input buffer and push down stack, with constituents moved
between input buffer and stack and vice-versa. If the input buffer
can be of unlimited size, such a machine can be shown to be able to

handle some strictly context-sensitive languages (in time n2 where
n = t h e length of input sentences). (4) In this framework,
"attention-shifting" corresponds exactly to shifting an item onto the
push-down stack from the input buffer, without reducing it to a
higher category nonterminal symbol. Thus we can determine what
class of languages Marcus-style parsers can handle and the
computational complexity of these devices. (5) Rule packets record
part of the left-hand context of the parse, corresponding to the item

sets of an l.R(k) (hence also LR(k,t)) parser. All the ingredients of
Marcus-style parsers, then, have been formally studied in the
context of programming language parsing, suggesting that known
techniques for reducing the size of l.R(k) parsers (see, e.g.,
Anderson, Fve, and (Horning 1973) may prove applicable to
"compiled" versions of Marcus-style parsers. This possibility is
currently under investigation.

REFERENCES

[I] Anderson, T., Eve, J. and Horning, J. "Efficient LR(1) Parsers,"
Acta Informatica. 2:1,(1973) 12-39.

[2] Berwick, R. Locality Principles and the Acquisition of Syntactic
Knowledge, PhD thesis. MIT Department of Electrical Engineering
and Computer Science, 1982

[3] Berwick, R. and Weinberg, A. The Grammatical Basis of
Linguistic Performance, Cambridge, MA: MIT Press, 1983 in press.

|4] Hammer, M. A New Transformation Into Deterministic
Top-down Form, PhD thesis, MIT Department of Electrical
Engineering and Computer Science, 1974.

[5] Hankamer, J. "Unacceptable Ambiguity," Linguistic Inquiry.
4:1,(1973)17-68.

[6| If iggenbolham. J. "Linking and Logical Form," unpublished
ms., MIT Department of Linguistics and Philosophy, 1982.

[7] Knuth, D. "On the Translation of Languages From Left to
Right" Information and Control. 8:6. (1965)607-639.

[8] Lester, A. A Parser for Simple German Sentences. MIT
Bachelor's thesis. Department of Electrical Engineering and
Computer Science, 1982.

|9| Marcus, M. A "theory of Syntactic Recognition for Natural
Language, Cambridge, M A : Ml T Press, 1980.

[10) Szymanski, T. and Williams, "Noncanonical Bottom-up
Pnrsing," SLAM Journal of Computing. 1:2,(1976) 146-160.

[I I] 'Thiersch, C. Topics in German Syntax, PhD thesis, M I T
Department of Linguistics and Philosophy, 1978.

[12] Williams, E. "Discourse and Logical Form," Linguistic Inquiry.
(1977)101-140.

