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Resume 
Motivation: Various tasks in computational biology, including primer and oligonucleotide array design; epitope mapping, 
etc. require finding unique regions in gene sequences. We developed a novel algorithm that finds such unique regions 
based on an alignment of the gene sequence to its paralogs. This algorithm was utilized for in-silico expression profiling 
using EST databases – an accurate low cost alternative to high-throughput “wet bench” expression profiling methods.  
Results: Analysis of expression patterns of enzymes in glycolytic pathway led to alternative hypothesis of fructose 
metabolism in the brain. Publicly available database of Expressed Sequence Tags (dbEST) consisting of multiple flat files 
was mined for crucial information and reformatted into a relational database. A public Internet access to the database is 
planned. 
Availability:  
-Available as a commercial package through Boston University technology transfer. 
-Free availability over the Internet: watch for update at http://zlab.bu.edu/~dmitriyl. 

Introduction 
With the completion of the human genome sequencing the focus of biological research has shifted to ‘postgenomics’: gene 
expression analysis, signal transduction pathways, modelling biological processes. Various high-throughput methods of 
expression profiling are now common, but costly and labor-intensive. A low cost, fast alternative to wet bench 
transcriptional profiling is utilizing information from public and private EST databases. 
ESTs (Adams et al., 1991) are single-pass sequenced cDNAs representing expressed genes from a specific cell population. 
EST library is a collection of ESTs from a single experiment. Database of Expressed Sequence Tags (dbEST, 
http://www.ncbi.nlm.nih.gov/dbEST/) is a public domain collection of flat files containing information about ESTs. 
Current number of ESTs in dbEST is close to 9 million and growing exponentially, the number of EST libraries exceeds 
8000 and the number of species is 345. Large EST databases have also been compiled in some of the genomics 
companies. If one compares an EST library to a single gene array type, the benefits of complementing other high 
throughput expression profiling technologies with EST data become obvious.  
Gleaning reliable expression information from EST data is challenging. One of the problems is that commonly used 
algorithms are designed not for EST expression profiling, but for assembling ESTs into contigs (clusters) for resolving full 
length cDNAs of novel genes. A by-product of such clustering is a collection of gene-specific ESTs, from which 
expression information can be derived. Such “misapplication” of algorithm could result in misinformation and errors. 
High sequence error rate (3.3%), alternatively spliced genes, 2-pass (instead of single pass) sequenced ESTs and 
contamination of dbEST with vector and wrongly indicated species sequences add to the challenge. Another common 
problem is the libraries in which the ratio between highly expressed and low abundance genes was altered to find rare 
transcripts. Such libraries are not suitable for quantitative analysis. If only quantitative libraries are used, then the number 
of ESTs for a certain gene can quantitatively represent the expression level of this gene in a tissue from which the ESTs 
originated (Funari et al., 2000). Yet another problem is inconsistent dbEST annotation that complicates data mining.  

Algorithms 
Virtual Northern Blot. While many of the EST-clustering algorithms are EST-centric, i.e. contig is assembled by 
“walking” from one EST to another, our approach is gene (cDNA)-centric. VNB starts with a gene sequence that is 
computationally divided, based on an alignment of this gene to its paralogs, in multiple probes that are unique for this 
gene. These probes are then computationally “hybridized” with identical sequences in dbEST to find ESTs corresponding 
to the gene. The number and the length of the probes are optimized based on several parameters that allows for high 
sensitivity and specificity. Using 100% sequence identity in the probe-EST alignment makes virtually certain that EST is 
specific for the gene, which eliminates the need for choosing an arbitrary cut-off, which is a major problem with 
identifying ESTs using BLAST, another gene-centric approach (Peri et al., 2001).  
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AutoProbe. AutoProbe is the core of VNB; it is an algorithm that finds maximally unique regions in a gene sequence 
based on a multiple alignment of the gene’s cDNA and its paralogs. AutoProbe idea is taken directly from experimental 
molecular biology, where one uses a short nucleic acid probe to hybridize to complementary mRNA sequences in 
Northern Blot. Unlike in regular Northern blot, multiple probes along the entire cDNA length have to be used in VNB in 
order to pull down all the ESTs for this cDNA, given that the ESTs can correspond to any cDNA region. 
The probes for virtual hybridization have to satisfy the following criteria:  
1) Probe length has to be long enough in order NOT to pull random sequences from the database.  
2) Probe length has to take into account the EST error rate. 
3) The probes have to be maximally gene-specific, i.e. have the least similarity to the paralogs.  
The minimum length requirement (1) is satisfied by applying Erdos-Renyi Law (Erdos, R'enyi, 1970). The maximum 
length (L) of a random sequence in the database of length (D) is defined by  

L=log1/P(DM/�)      (1) 
where M is the number of probes, P is the probability of encountering any one of the nucleotides = 1/4 and α is a desired 
significance level. Although the total length of human dbEST is 2 GB (2 billion nucleotides), the non-redundant portion of 
it is only ca. 100 million nucleotides – the overall length of the coding regions. The number of probes for an average 
cDNA and the window size of 10 is 250. Substituting for D, M and α we get L = 19.43 for α= 0.05 and 20.59 for α=0.01, 
i.e. 20 nucleotides should be the lower limit of probe size in order not to extract random sequences from the database. This 
lower limit varies slightly with increasing probe length and the size of the database in case of organisms with higher than 
human length of coding regions.  
The requirement (2) determines the upper size of the probe: an average EST error rate is 3.3%, therefore one can expect a 
sequencing error every 30 nucleotides. In order for a probe to be on average between sequencing errors, the probe should 
be no longer than 30 nucleotides. To satisfy gene-specificity requirement (3), each probe is given a score that reflects the 
similarity of the probe region to the paralogs. The score for a probe is calculated as follows: each nucleotide position in the 
multiple alignment is given a numerical value based on the number of matches, mismatches and gaps. The scores for each 
individual position are summed across the probe length. Matches are given higher score than mismatches while 
mismatches are higher than gaps, ensuring that the regions of the least similarity have the lowest score. In order to cover 
the entire length of the cDNA, each probe is chosen inside a fixed length sliding window based on the minimum probe 
score in this window. The length of the sliding window as well as the length of the probe could vary for each gene family 
depending on the sequence similarity between family members, and could be determined experimentally. We showed that 
for Aldolase C sliding window of 12 with probe size of 24 nucleotides are the parameters achieving the most sensitivity at 
100% specificity. 

Results 
VNB was used to study expression profiles for fructose metabolism specific enzymes: aldolase isozymes and 
ketohexokinase (KHK). The goal was to obtain information about possible alternative sites of fructose metabolism, 
important for our understanding of Hereditary Fructose Intolerance (HFI) – a metabolic disorder in which unassimilated 
fructose-1-phosphate accumulates in liver, eventually shutting down gluconeogenesis and glycogenolysis, resulting in 
severe hypoglycemia, hepatic failure and eventually death. Although HFI patients have a mutation in one of the essential 
enzymes in the fructose metabolism, Aldolase B, a fraction of consumed fructose (ca. 40%) is processed by unclear 
mechanisms. The liver and kidneys, and to a lesser extent the small intestine, were the only organs reported to carry out 
this process, however in normal metabolism only ca. 60% of fructose is known to be internalized in these organs. Our 
strategy was to find alternative metabolic sites by identifying tissues that coexpress pathway-specific enzymes. Expression 
of KHK has been previously assayed by several different techniques, however the results were inconclusive (Table). 
 

Table. KHK expression in brain. 
Method Result 

Immunohistochemistry (Bergbauer et al., 1996) - 
Activity assays (Aldeman et al., 1967, Bais et al., 1985) -/+ 
RNase Protection Assay (Hayward et al., 1998) - 
Affymetrix GeneChips (Haverty, 2001) - 
RT-PCR (Hayward et al., 1998) +/- 

 
VNB demonstrated that KHK exhibits a previously unknown expression in brain, colon and mammary gland. To confirm 
VNB results we performed RNA in-situ hybridization (RISH, data not shown) on brain sections with digoxigenin-labeled 
KHK antisense probe that confirmed KHK expression in cerebellum and brain stem. These results suggest certain regions 
of brain as alternative sites of fructose metabolism. Aldolase C, not Aldolase B isozyme was found to be coexpressed with 
KHK in brain, suggesting that alternative metabolic sites might use alternative isozymes in the same pathway. These 
hypotheses have yet to be confirmed by other methods, for example, activity assays on specific tissues/primary cell 
cultures or animal knockout studies.  
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One of the surprising results was that VNB was more sensitive in this experiment than Affymetrix GeneChips, which 
showed no KHK expression in brain. This can be explained by high resolution of VNB on non-quantitative libraries, or, 
simply, by different methods of tissue preparation. 

VNB Limitations and Scope  
VNB is best suited to doing a first, very fast, pilot study prior to confirming the obtained expression data by experimental 
means. VNB accounts for splice variants only in the regions of alternative splicing. As other expression profiling methods, 
VNB results depend on the way a tissue was prepared (e.g. microdissected vs. the entire organ). Compare to microarrays 
VNB has a speed advantage only while using existing EST data. Although some groups do make new EST libraries 
specifically to derive expression profiles (Bodymap, http://bodymap.ims.u-tokyo.ac.jp/), microarrays allow for higher 
throughput in new experiments. Dynamic range of the method is dependent on the total number of available ESTs. While 
current number of ESTs in dbEST does not allow obtaining quantitative profiles for rare transcripts, VNB has a high 
qualitative resolution owing to normalized libraries. Finally, most ESTs in dbEST were obtained by oligo-dT priming in 
order to represent the cell’s mRNA population. This method misses several recently discovered classes of regulatory RNA 
(Eddy, 2001) that do not have a poly-A tail (although the same is true for cDNA and currently commercially available 
oligo arrays). 

Implementation 
VNB is implemented as PERL script. Time required to obtain all accession numbers of the ESTs corresponding to the 
cDNA of interest for a high abundance gene (>1000 ESTs in dbEST) is 1-2 minutes on 1 GHz Intel Pentium III processor 
running LINUX. The time for obtaining expression profiles will be reduced farther after complete automation of the tool. 
Complete automation includes assembling gene-specific sets of ESTs for every known gene, automatic verification of 
ESTs that are duplicate reads, parsing for relevant tissue and library construction information, and reformatting dbEST 
into PostgreSQL object-relational database with web interface (public access is planned for the fall 2002). The database 
queries will follow basic biological rationales. The complete tool in its initial state will allow obtaining expression profiles 
for a known genes and novel sequences as well as tissue ‘fingerprints’.  
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