
COM PUTATIONAL ('Obl PLEXITY AND
LEXICAL FUNCTIONAL GRAMMAR

Robert C. Berwick
MIT Artificial Intelligence Laboratory, Cambridge, MA

1. INTRODUCTION
An important goal of ntodent linguistic theory is to characterize as narrowly
as possible the class of natural !anguaooes. An adequate linguistic theory
should be broad enough to cover observed variation iu human languages, and
yet narrow enough to account for what might be dubbed "cognitive
demands" -- among these, perhaps, the demands of lcarnability and
pars,ability. If cognitive demands are to carry any real theoretical weight, then
presumably a language may be a (theoretically) pos~ible human language,
and yet be "inaccessible" because it is not leanmble or pa~able.

Formal results along these lines have already been obtained for certain kinds
of'rransformational Generative Grammars: for example, Peters and Ritchie
[I] showed that Aspeel~-style unrest~ted transtbrmational grammars can
generate any recursively cnumerablc set: while Rounds (2] [31 extended this
work by demonstrating that modestly r~tricted transformational grammar~
(TGs) can generate languages whose recognition time is provhbly
expm~cntial. (In Rounds" proof, transformatiocs are subject to a "terminal
length non-decreasing" condition, as suggested by Peters and Myhill.) Thus,
in the worst case TGs generate languages whose recognition is widely
recognized to be computatiofrally intrdctable. Whether this "worst case"
complexiw analysis has any real import for actual linguistic study has been
the subject of ~me debate (for discussion, see Chomsky [4l; Berwiek and
Weinbcrg [5]). Without resolving that cuntroversy here howeser, one thin-g-
can be said: to make TGs cmciendy parsable one might provide
con~train~ For instance, these additional s'~'ictutes could be roughly of the
sort advocated in Marcus' work on patsinB [6] -- constraints specifying that
TG-based languages must haw parsers that meet certain "lecality
conditions". The Marcus' constraints apparently amount to an extension of
Knuth's l.,R(k) locality condition [7] to a (restricted) version of a two-stack
deterministic push-down automaton. (The need tbr LR(k)-like restrictions in
order to ensure efficient processability was also recognized by Rounds [21.)

Recently, a new theory of grammar has been advanced with the explictiy
stated aim of meeting the dual demands of tearnability and pa~ability - the
Lexical Functional Grammars (LFGs) of Bresnan [!~ I. The theory of l.exical
Functional Grammars is claimed to have all the dc~riptive merits of
transformational grammar, but none of its compotational unruliness, In
t.FG, there are no transformations (as classically described); the work
tbrmerly ascribed to transformations such as "passive" is shouldered by
information stored in Ibxical entries associated with lexical items. T h e
climmation of transformational power naturally gives rise to the hope that a
lexically-based system would be computationally simpler than a
transformational one.

An interesting question then is to determine, as has already been done for the
case of certain brands of transformational grammar, just what the "worg
case" conlputational complexity for the recognition of LFG languages is. If
the recognititm time complexiW for languages generated by the basic LFG
rheas can be as complcx as that for languages generated by a modestly
restricted U'ansfunnational system, then presumably [.FG will also have to
add additional coastraiuts, beyond those provided in its basic theory, in order
',u ensure efficient parsability.

The main result of this paper is to show that certain [.exical Functional
Grammars can generate languages whose recognition time /s very likely
ct~mput.'xtionally intractable, at Ie,'LSt a~urding to our current understanding
of wl~at is or is not rapidly solvable. Briefly. the demonstration proceeds by
showing how a problem that is widely conjectured to be cumputationally
dimcult -- namely, whether there exists ~n ~%ignment of Us and O's (or '*T"s
and "l~'s) to tire litcrals ofa Bta~lcan formula in conjunctive normal form that
makes the forrnula evaluate to "I" (or "tree") -- can be re-expressed as the
prublcm of recognizing whctl~er a particular string is or is uot a member uf
the language generated by a certain lexical functional grammar. This
"reduction" shows that in the worst case the recognitinn of I.FG lanp, uages

can be just as hard as the original Boolean satisfiability problem. Since k is
widcly conjectured that there cannot be a polynomial-time alguriti'n'n for
satisfiabiliW (the problem is NP-complete), there canno~, be a polynomial-dine
recognition algorithm for LFG's in general either. Note that this result
sharpens that in Kaplan and Bresnan [81: there it is shown only that LFG's
(weakly) generate some subset of the class of context-sensitive languages
(including some strictly context-sensitive languages) and therefore, in the
worst case, exponential time is known to be sufficient (though not necessary)
to reaognize any LFG language. The result in [81 thus does not address the
question of how much time, in the worst case, is necesmry to recognize LFG
languages. The result of this paper indicates that in the worst case more than
pnlynomial time will probably be necessary. (The reason for the hedlp."
"probably" will become apparent below; it hinges upon the central unsolved
conjecture of current complexity theory.) In short then, this result places the

• LFG languages more precisely in the complexity hierarchy.

It also toms out to be instructive to inquire into just why a lexically-based
approach can tom out to be compurationally difficult, and how
computational tractability may be guaranteed. Advocates of lexically-based
theories may have thought (and some Pave explicitly stated) that the
banishment of transformations is a compumdonally wise move because
transformations are computationally "expensive." Eliminate the
transformations, so this casual argument goes, and one has eliminated all
comptitational problents. In~guingiy though, when one examines the proof
to be given below, the computational work done by transformations in older
theories re, emerges in the lexical grammar as the problem of choosing
between alternative categorizations for lexical items - deciding, in a manner
of speaking, whether a particular terminal item is a Noun or a Verb (as with
the word k/ss in English). This power .of choice, coupled with an ability to
express co-occurrence constraints over arbitrary distances across terminal
tokens in a string (as in Subjeat-Verb number agreement) seems to be all that
is required to make the recognition of LFG languages intr~table. The work
doee by transformations has been exchanged for work done by lexieM
~.hemas. but the overall computational burden remains mugidy the same.

This leaves the question posed in the opening paragraph: j ug what sorts of
constraints on natural languages are required in order to ensure efficient
parsabil)tg? An infoqrln~ argume.nt can be made that Marcus' work [6}
provides a good first attack on just this kind of characteriza~n. M~x:us'
claim was that languages easily parsed {not "garden-pathed") by o¢oole could
be precisely modeled by the languages easily pm'sed by a certain type of
restricted, deterministic, two-stack parsing machine. But this machine can be
spawn to be a (weak) non-canonical extension of the I,R(k) grammars, as
proposed by Knuth [51.

Finally, this paper will discuss the relevance of this technical result for more
down-to-earth computational linguistics. As it turns out, even though 2eneral
LFG's may well be computationally intractable, it is easy to imagine a variety
of additional constraints for I..FG theory that provide a way to sidestep
arovr,d the reduction argument. All of these additional r~trictions amount to
making the LFG theory more restricted, in such a way that the reduction
argument cannot be made to work. For example, one effective restriction is
to stipulate that there can only be a finite stock of features with which to label
Icxical items. In any case, the moral of the story is an unsurprising one:
specificity and constraints can absolve a theory of computational
intr~tability. What may be more surprising is that the requisite locality
constraints seem to be useful for a variety of theories of grammar, from
transformational grmnmar to lexieal functional gr,'unmar.

7

2. A REVIEW Ok" 131:DU,,eTI'ION ARGUMENTS

The demonstration of the computational complexity of I.FGs rcii~ upon the
standard complexity-theoretic technique of reduction. Becauso this method
may be unf.',,ndiar to many readers, a short review is presented immediately
below: this is followed by a sketch of the reduction proper.

The idea behind the reduction technique is to take a difficult problem, in this
case. the problem of determining the satisfiability of Boolean .rormu/as in
conjunctive normal form (CNF), and show that the known problem can be
quickly transfumled into the problem whns¢ complexity remains to be
determined, in this case. the problem of deciding whether a given string is in
the language generated by a given Lexical Functional Grammar. Before the
reduction proper is reviewed, some definitional groundwork must be
presented, A I]ooleanformula in cenjunctDe normal form is a conjunction of
disjunctions. A formula is satisfiable just in case there exkts some assignment
of T's and ['~s (or t's and 0's) to the Iiterals of the formula X i that fumes the
evahmtion of the enure formula to be 1"; oLherwise~ the formula is said to be
unsmisfiable. For cxmnpl¢

(X2VX3 VXT)A(XIV~2VX4)A(X3VXIVX 7)
is satisfiable, since the assignment of Xz=T (hence ~'2= F'), X3= F (hence
X3='l'). XT=F (.~./=T). XI=T (XI=F), and X4=F makes the whole
formula cvalute to "T". The reductioo in the proof below uses a somewhat
more restuictcd format where every term is comprised of the disjunction of
exacdy three [itcrats, so-called 3-CNF(or "3-SAT"). "l'his restriction entails
no loss of" gcncralit!,, (see Hopcmft and Ullman, [9]. Chapter 12), since this
restricted furmat is also NP-complete.

How does a reduction show that the LFG recognition problem must be at
least .',s hard (computatiomdly speaking) as the original problem of Boolean
satisfiability? Ihe answer is that any decision procedure for LFG recognition
could be used as'a correspondingly f~st procedure for 3-CNF. as follows:
(1) Given an instance of a 3-CNF problem (the question of whether there
exists a satisl'ying assignment for a given luminia in 3-CNF), apply the
transfi~mlational algurithm provided by the reduction: this algorithm is itself
~L%sumed tO execute quickly, in polynomial time or less. "]~e algurid'an
outputs a corresponding LFG decision problem, namely: (i) a lexical
functional grammar and (ii) a string to be tested lbr membership in the
language generated by the I.FG. The LFG recognition problem r~presents or
mimics the decision problem for 3-CNF in the sense that the "yes" and "no ~
answers to both ~dsfiability problem and membership problem must
coincide (if there is a satisfying ag,;ignmenL then the corresponding LFG
decision problem should give a "yeS" answer, etc.).
(2) Solve the LFG decision problem -- the string-LFG pair - output by Step
h if the string is in the LFG language, the original formula was satisfiable; if
not. unsadsfiable.

(Note that the grammar and string so constructed depend upon just what
formula is under analysis; that is. For each different CNF formula, the
procedure presented above outputs a diffemnt LFG grammar and suing
combination. In the LFG case it is important to remcmber that "grammar"
really means "grammar plus lexicon" - as one might expect in a
lexically-based theory. S. Petet~ has observed that a siighdy different
reduction allows one to keep most of the grammar fixed across all possible
input formulas, constructing only different-sized lexicons for each different
CN[: Formula; for details, see below.)

To see how a reduction can tell us something about the "worst ca.~" time or
space complexity required to recognize whether a string is or is not in an LFG
language, suppose for example that the decision procedure for determining
whether a string is in an LFG language takes polynomial time (that is, takes
time n k on a deterministic "ruling machine, for some integer k, where n= the
length of the input string). Then. since the composition of two polynomial
algorithms can be readily shown to take only polynomial time (see [91
Chapter 12), the entire process sketched above, from input of the CHF
formula to the decision about its satisfiability, will take only polynomial time.

However, CNF (or 3-CNF) has no known polynomial time algorithm, and
indeed, it is considered exceedi~zgly unlikely that one could exists. "Vaerefore,
it is just as unJikely that LFG recognition could be done (in general) in
polynomial time,

The theory of computational complexity has a much more compact term for
problems like CNF: CNF is NP-cnmolcte. This label is easily deciphered:
(1) CNF is in the class NP. that is, the class or" languages that can be
recognized by a .qD.n-deterministic Tunng machine in Dgivnomial time.
(Hence the abbreviabon "NP", for "non-deterministic polynomial". To see
that CNF ,', in the class NP, note that one can simply guess all possible
combinations of truth assignments to iiterab, and check each guess in
polynomial lune.)
(2) CNF is complete, that is. all other languages in the class NP can be quickly
reduced to some CNF formula, (Roughly. one shows that Boolean formulas
can be used to "simuiam" any valid computation of a non-determinis~
Toting machine,)

Since the class of problems solvable in polynomial time on a determinist~
Turing machine (conventionally notated. P) is trivially contained in the clas~
so solved by a nondcterministic Turing machine, the class P must be a subset
ofdle class NP. A well-known, v, ell-studicd, and still open question is whther
the class P is a nroner subset of the class NP. that is. whether there are
problems solvable i.t non-deterministic polynomial time that cannot be
solved in deterministic polynomial time.. Ik'causc all ofthe several thousand
NP-eomplcte problems now catalogued have so far proved recalcitrant to
deterministic polynomial time solution, it is widely held that P must indeed
Ix a proper subsot of NP, and therefore that dte best possible algorithms for
solving NP.complcte problems must take more than polynomial time (in
general, the algorithms now known tbr such pmbtems inw~lve exponential
combinatorial search, in one fashion or another; these are essentially methods'
that do no Ixtter than to bnttally simulate -- deterministically, ofcout~e - a
non-deterministic machine that "guesses" possible answeix)

To repeat the Force of the reduction argument then, it" all LFG rec~ i t ion
problems were solvable in polynomial time. then the ability tu quickly reduce
CNF Formulas to LFG recognition problems implies that all HP-complete
problems would IX sulvabl¢ in polynomial rime. and that the class P=the
class NP. This possibility seems extremely remote, tlence, our assumption
that there is a fast (general) procedure for recognizing whether a string is or is
not in the language generated by an arbitrary LFG grmnmar must be false.
In the mrminology of complexity theory, LFG recognition must be NP-hard
- "as hard as" any other NP problem, including the NP-complete problems.
This means only that LFG recogntion is at least as haedas other NP-complcm
problems -- it could still be more ditlicult (lie in some class that contains the
class NP). If one could also show that the languages generated by LFC.s arc
in the class NP, then LFGs would be shown to be NP-complcte. This pal~'r
stops short of proving this last claim, but simply conjectures that LFGs are in
the clasa NP.

3.A s g ~ c 8 o ~ l g ~
To carry out this demonstration in detail one mug explicidy describe the
t~nsformauon procedure that takes as input a formula in CHF and outputs a
corresponding LFG decision problem - a string to be tested for membership
in a LFG language and the LFG itself. One must also show that this can be
done quickly, in a number of stc~ proportional to (at most) the lefigth of the
original formula to some polyoomlal power, l~t us dispose of the last point
first. The string to be tested for membership in the LFG language will simply
be the original formula, sans parentheses and logical symbols; the LFG
recognition problem is to lind a well-formed derivation of this string with
respect to the grammar to be provided. Since the actual grammar and string
one has to wrim down to "simulate" the CNF problem turn out to be no
worse than linearly larger than the original formula` an upper bound of say.
time n-cubed (where n=length of the original formula) is more than
sufficient to construct a corresponding LFG; thus the reduction procedure
itself can be done in polynomial time. as required. This paper will therefore
have nothing fiarther to say about the time bound on the transformation
procedure.

8

Some caveats are in order .before embarking on a proof sketch of this
rednctio¢ First of all, the relevant details of the LFG theory will have to be
covered on-the-fly; see [8] for more discussion.' Also, the grammar that is
output by the reduction procedure will not look very much like a grammar
for a natural language, ~ilthbugh the grammatical devices that will be
employed will in every way be those that are an essential part uf the LFG
theory. (namely, feature agreement, the lexical analog of Subject or Object
"control", lexical ambiguity, and a garden variety context-free grammar.) In
other words, although it is most unlikely that any namnd language would
encode the satisfiability probl.cm (and hence be iutractablc) in just the
manner oudined below, on the other hand. no "exotic" LFG machinery is
used in the reduction. Indeed. some of the more powerful LFG notational
formalisms -- long-distance binding existential and negative feature operators
- have not been exploited. (An earlier proof made use of an existential
operator in the feature machinery of LFG, but the reduction presented here
does not.)

To make good this demonstration one must set out just what the ~tisfiability
problem is and what the decision problem for membership in an I..FG
language is. Recall that a formula in conjunctive normal form is satisfiable
just in case every conjunctive term evaluates to true, that is, at least one literal
in each term is true. The satisfiability problem is to find an assignment of'I"s
and Fs to the literals at the bottom (note that the comolcment of literals is
also permitted) such that the root node at the top gets the value "T" (for
li31g). How can we get a lexical functional grammar to represent this
problem? What we want is for satisfying a.~ignments to correspond to to
well-formed sentences of some corresponding LFG grammar, and
non,satisfvint assignments to correspond to sentences that are not
well-!'ormed, according to the LFG grammar:.

satisftable non-satisfiable
f o ? l a w form la|n~W

sentence w' IS sente w" IS NOT
in LFG language L(G) in LFG language L(G)

Figure I. A Reduction Must Preserve Soludona to the Original Problem

Since one wants the satisfying/non-satisfying assignments of any particular
formula "to map over into well-formed/ill-formed sentences, one must
obviously exploit the LFG machinery for capturing well-formedncm
conditions for sentences, First of all, an LFG contains a base context-free
m-ammar. A minimal condition for a sentence (considered as a string) to be in
the language generated by a lexical-functional grammar is that it can be
generated by this base grammar:, such a sentence is then said to have a
well-formed constituent structure. For example, if the base roles included
S=bNP VP; Vp=Pv NP, then (glossing over details of Noun Phrase rules)
the sentence John kissed the baby would be well-formed but John the baby

would not. Note that this assumes, as usual, the existence of a lexicon
that provides a categorization for each terminal item, e.g., that baby is of the
eategury N, k/xr, ed is a V, etc. Importantly then. this well-formedness
cn/~dition requires us to provide at least one legitimate oarse tree for the
candidate sentence that shows how it may be derived from the underlying
LFG base context-free grammar. (There could be more than one legitimate
tree if the underlying grammar is ambiguous.) Note further that the choice of
categorization for a lexical item may be crucial. If baby was assumed to be of
category V, then both sentences above would be ill-formed.

A second major component of the LFG theory is the provision for adding a
set of se-called functional equations to the base context-free rules. The~
equations ,are used to account for that the co-oecurrence restrictions that are
so much a part of natural languages (e,g., Subject-Ve~ agreement). Roughly,
one i s allowed to associate featur~ with lexical entries and with the
non-terminals of specified context-free rules; these features have values. The
equation machinery is used to pass features in certain ways around the par,~
tree, and conflicting values for the same feature are cause for rejecting a
candidate analysis. To take the Subject-Verb agreement example, consider
the sentence the baby is kissing John. The lexical entry for baby (considered

as a Noun) might have the Number feature, with the value sinzular. The
lexieal entry for is might assert that the number feature of the %tbiect above
it in the parse tree must have the value singular: meanwhile, the feature
values for Subject are automatically found by another rule (associated with
the Noun Phrase portion ofS=:,NP VP) that grabs whatever features it finds
below the NP node and copies them up above to the S node. Thus the S node
gets the Subject feature, with whatever value it has passed from baby below --
namely, the value sintadar: this accords with the dicates of the verb/s, and all
is well. Similarly, in the sentence, the boys in the band is kissing John, bays
passes up the number value olural, and this clashes with the verb's constraint;
as a result this sentence is judged ill-formed:

,lqp•Tp,/jfeatures•¢ Subject Number.Singular or Plural?
= CLASHI

I
Number.plural V *, Number:singular

lJ
the boys in the band is" kissing John.

Figure 2. Co-eccurrence Restrictions are Enforced by Feature Checking in an
LFG.

It is important to note that the feature comparability check requires (1) a
particular constituent structure trec (a pm~c tree); and (2) an assignment of
terminal items (words) to lexical categories -- e.g., in the first Subject-Verb
agreement example above, baby was assigned to be of the category N, a
Noun. The tree is obviously required because the feature checking
machinery propagates values according to the links specified by the
derivation tree; the assignment of terminal items to categories is crucial
because in most c a ~ the values of features are derived from those listed in
the lexical entry for an item (as the value of the numb~er feature was derived
frtnn the lexical entry for the Noun form of bab~,). One and the same
terminal item can have two distinct lexical entries, corresponding to distinct
lexical categorizations; for example, baby can be both a Noun and a Verb. If
we had picked baby to be a Verb, and hence had adupted ~hatevcr features
are associated with the Verb entry for baby to be propagated up the tree, then
the string that was previously well-formed, the baby is kissing John would
now be considered deviant. If a string is ill-formed under all possible
derivation trees and assignments of features From possible lexical
categorizations, then that string is norin the language generated by the LFG.
The possibility of multiple derivation trees and lexical categorizations (and
hence multiple feature bundles) for one and the same terminal item plays a
crucial role in the reduction proof: it is intended to capture the satisfiability
problem of deciding whether to give a literal X i a value o f " l " or "F".

Finally, LFG also provides a way to express the familiar patterning of
grammatical relations (e.g.. "Subject" and "Object") found in natural
language. For example, transitive verl~ must have objects. This fact of life
(expressed in an Aspects.style transformational grammar by subcategorization
re~ictions) is captured in LFG by specifying a so-called ~ (for
predicate) feature with a Verb: the PRED can describe what grammatical
relations like "Subject" and "Object" must be filled in after feature passing
has taken place in order for the analysis to be well-formed. For instance, a
transitive verb like kiss might have the pattern, kiss((SubjeetXObject)), and
thus demand that the Subject and Object (now considered to be "features")
have some value in the final analysis. The values for Subject and Object
might of course be provided from some other branch of the parse tree, as
provided by the feature propagation machinery; for example, the Obiect
feature could be filled in from the Noun Phrase part of the VP expansion:

'SUBJECT: Sue 1
S (eatures:lPRED !*kiss<(SubjeetXObjec0)l

J
V NP. sue / I

km John

Figure 3. Predicate Templates Can Demand That a Subject or Object be
Filled In.

But. if the Object were not filled in, thee die analysis is declared func#onally
incomplele, and is ruled our. This device is used tO cast out sentences such as.
t/m baby kL~eg

$o much for the LFG machinery that is required for the reduction proo£
(There are additional capabilities in the LFG theory, such as long-distance
binding, but these will nut be called upon in the demonstration below.)

What then does the LFG repmsentador, of die satisfiabillty problem look
like? Basically, there are three parts to the sausfiability problem that mug be
mimicked by the LFG: (I) the assignment ofvaines to literals, e.g., X2-) 'r";
X4-Y'F"; (2) the co-ordination of value assignments across intervening literals
in the formula; e.g., the literal X 2 can appear in several different terms, but
one is nut allowed to assign it the value "1" in one term and the value "F" in
another (and the same goes for the complement of ~, literal: if X 2 has die
value 'T ' . "~z cannot have die valu~ "V'): and (3) ~tisfiability must
corresl~md to LFG wcll-formedness, i.e. each term has the truth value "r"
just in case at least one literal in the tenn is assigned "I" and all terms must
evaluate to " l TM.

Let us now go over how these components may be reproduced in an LFGo
one by one.
(t) Assignments: The input string to be tested for membership in the LFG
will simply be the original formula, sans parentheses and logical symbols: the
terminal items are thus just a string of Xi's. Recall that the job of checking
the string for well-formedn,.-~s involves finding a derivation tree for the suing,
solving the ancillary co-oecurrencc equations (by feature propagatiun), and
chetking for functional completeness. Now, the cuntext-fre~ grammar
constructed by the transformation procedure will be set up so ,'ts to generate a
virtual copy of the associated formula, down to the point where literals X i are
a~signed dicir values o f ' r " or "F". If the original CNF form had N terms.
this part of grammar would look like:

S~,T 1 T 2 .. T n (one "l" for each term)

Ti=~Yi Yi Yk (one triple of Y's per term)

Several comments are in order here.
(I) The context-free base that is built depends upon the original CNF
formula that is input, since the number of terms.' n, varies from formula to
formula. In Stanley Peters' improved version of the reduction proof, the
context-free base is fixed for all formulas with the rules:
S='S S'
S'==' T T T o r S m T T F o r T F F o r T F T o t _
(remaining twelve expansions that have at least one " I" in each triple)

The Peters grammar works by recursing until die right number of terms is
generated (any sentences that are too long or too short cannot be matched to
the input formula). Thus, the number of terms in the original CNF formula
need not be explicidy encoded into the base grammar.

(2) The subscripts Lj, and k depend on the actual subscripts in the original
formula.
(3) The Yi are not terminal items, but are non-terminals.
(4) This grammar will have to be slightly modified in order for the reduction
to work. ~ will become apparent shordy.

Note that so far there are no rules to extend the parse tree down co the level
of terminal items, the X r The next step does this and at the same time adds
the power to choose between " r " and "F" assignments to literais. One
includes in the context-free base grammar two productions deriving eacJa
terminal item Xi, namely, XiT=~X i and XiF'mpX i, corresponding to an
assgnment of - r " or "F" to the formula literal X i (it is important not to get
confused here between the literais of the formula - these are terminal
elements in the lexical functional grammar - and die literals of the grammar
- the non-terminal" symbols.) One must also add, obviously, the rules
Yi=~XiTlXi F, for each i, and rules corresponding to. the negations of

variables, "~ir-- '~i Note that these are not "exotic" t.FG rules: exacdy the
same sort of rule is required in the baby case, i.e.. N ~ b a b y or V=~.baby,
corresponding to whether baby is a Noun or a Verb. Now. the lexical entries
for the "XiT " ' categ.rization of X i will look very different from the "XiF'
eategodzadon of X i. just as one might expect the N and V forms for baby to
be different. Here is what the entries for the two categorizations of X i look
like:

X~ XiT (Ttmth-assignment)=T
(Tassign Xi)=T

Xl: XiF (Tassign X i) = F

The feature assignments for the negation of the literal X i is simply the dual of
the entries above (since the sense o f "T" and "I-" is reve~cd):

~" .~'iT (T truth-amsignment) = T
(fa.~igu X.~: F.

x,v :T

The role of the additional "truth-ass/gnment" feature will be explained
bdow.

Figure 4. Sample Lexieal Entries to Reproduce the Ass/gument of T's and l'~s
to a literal X r

The upward-dirked arrows in the entries reflect the LFG re.mum
propagation machinery. In the case of the X|T entry, for instance, they say to
"make the Truth-assitnment feature of the node above XiT have the value
"T =. and make the ~. pordon of the A~izn feature of the node above have
the value T." This feature propagation device is what reproduces the
assignment of T's and Fs to the CNF limrala, [f we have a triple of such
eicmen~ and at least one of d~m is expanded out to XiT. then the restore
pmpagauon machinery of LFG will merae the common feature names intu
one large m~cture for the node above, reflecting the assignments made;
moreover, the term ~ll get a tilled-in truth assignment value just in case at
~ag one of the expansions selected an XIT path:

terminal
suing:

T'
X i

fPnmre s~rtlCtUr¢:

i F i kF

X X k

t ruth'assignment=

I
Xj=

L L::aJ

Figure 5. The LFG Feature Pmpagatiun Machinery is Used to Percolate
Feature Assigumants from the Lexicon.

10

(The features are passed transparendy through the intervening
Yi nodes via the LFG ".copy" device. (T = J.);
this simply means that all the features of the node below the node to
which the "copy" up-add-down arrow'~ are attached are to be
the same as those of the node above the up-and-down arrows.)
It is p!ain that this mechanism mimics the a.~ignment of valueS~'.o literah
required by the satisfiability problem.

(2) Co-ordination of aasignments: One must also guarantee that the X i value
assigned at one place in the tree is not contradicted by an X| or X i elsewhere.
To ensure this, we use the LFG co-occurrence agreement machinery: the
Assilzn feature-bundle is pass~ up from each term T i to the highest node in
the parse tree (one simply adds the (i" =]3 notadon to each T i rule in order to
indicate this). The Assign feature at this node will thus contain the union of
all ~ feature bundles passed up by all terms. If any X i values conflict,
then the resulting structure is judged ill-formed. Thus, only compatible Xi
assignments are well-formed:

features: Assign: ~..i =T or F3.1

T ~ , ~ Clashl

~ T X~T

I

{Tz~gn X~) = T (Tassign X~ = F)

Figure 6. The Feature Comparability Machinery of LFG can Fon:e
Assignments to be Co-ordinated Across Terms.

(3) Prt.'servation of satisfying assignments. Finally, one has to reproduce the
conjunctive chanlcter of the 3-CN F prublem -- that is, a sentence is ~atisfiahle
(wcll-formcd) iff each term has at least one literal assigned the value "1".-
Part of the disjunctive character of the problcm has already been encoded in
the feature propagation machinery p~¢~nted so far: if at least one X i in a
term "]'j cxpands to the Iexical entry XiT, then the tr~th-a~siRnment feature
gets the value T. "['his is just as desired. Ifone, two, or three of the literais X i
in a term select XiT, then Tl's truth-assigument feature is T. and the analysis
is well-formed. But how do we rule out the case where all ~ree Xi's in a lerm
select the "F ' path. XiF? And how do we ensure that all terms have at least
one T below them?

Both of these problems can be solved by resorting to the LFG functional
completeness constraint. The ~ck will be to add a Pred feature to a
"dummy" node atu~ched to cach term; the sole purpose of this feature will be
to refer to the feature "l'mth:a~,~i~,pm.q2.e=.g~ just as the predicate template for the
transitive verb ki.~* mentions thc feature Object. Since an analysis is not
wcll-formcd if the "grmnmatical relations" a Pred mentions are not filled in
from somewhere, this will have the effect of forcing the Tmth-~i=nment
t'cature to gct filled in every term. Since the "F" lexical entry does not have a
l'mth-assimlmcnt value, if all the X i in a term triple select the XIF path (all
the litcrais are "F") then no Truth-assignment feature is ever picked up from
the lexicai entries, and that term never gets a Truth-assignment feature. This
violates what the predicate template demands, and so the whole analysis is
thrown out. (The ill-formednoss is ex~dy analogous to the case where a
transitive verb never gets an ObjeCL) Since this condition is applied to each
term, we have now guaranteed that each term must have at least one literal
below it that ~clects the 'T" path -- just as desirea. Fo actually add the new
predicate template, one simply adds a new (but dummy) branch to each term
'1" v with the appropriate predicate constraint attached to it:

/

11

T, featureJ:,.~ured: "dummy2<(TTruth-assignmen0~

Dum~ty2 r / ~ I /
lexical entry: i I , ~.
'dummy2': J "~ XtT XtF ~"~vF : ,", (I' r
'dummy2((1' Truth-assignment)> ~, , X i |

(TTruth-assignmen0 = T

Figure 7. Predicates Can be Used to Force at least one ~ Per Term.

There is a final mbde point here: one must prevent the Pred and
Truth-assignment features for each term from being passed up to the head
"S" node. The reason is that if these features were passed up, then since the
LFG machinery automatically mergea the values of any features with the
same name at the topmost node of the paine tree, the LFG machinery would
fume the union of the feature values for Pred and Truth-asugnment over all
terms in the analysis tree. The result would be that if any term had .at least
one "I" {hence satisfying the Truth-assignment predicate template in at least
one term), then the Pred and Truth-assignment would get filled in at the
topmost node as well. The string below would be well-formed if at-least one-
term were "T", and this would amount to a disjunction of disjunctions (an
"OR" of "OR"s), not quite what is ~ugh¢. To eliminate this possibility, one
must add a final trick: each term T I is given separate Predicate,
Truth-assignment. and Assign features, but only the Assign feature is
propagated to the highest node in the parse tree as such, In contrast, the
Predicate and Truth-assignment features for each term are kept "protected"
from merger by storing them under separate feature headings labelled
T1... 'r n. "l~e means by which just the ASSIGN feature bundle is lifted out is
the LFG analogue of the natural language phenomenon of Subject or Object
"control". whereby just the features of the Subject or Object of a lower clause
are lifted out of the lower clause to become the Subject or Object of a matrix
sentence; the remaining features stay unmergeable because they stay
protected behind the individually labelled terms.

To actu,'dly "implement" this in an LFG one can add two ncw branches to
each Term expansion in the base context-free grammar, as well as two
"conttul" equation specificatious that do the actual work of lifting the
features from a lower clause to the matrix ~ntence:
Natural language case (from [81, pp. 43-45):

The girl persuaded the baby to go.

(part of the) lexicai ena'y for
perauaded:

V (T VCOMPSubject)=(T OhjecO

The notation (T VCOMP Subjec0=(T Object) - dubbed a "control
equation" -- means that the features of the Object above the V(erb) node am
to be the same t~ those of the features of the Subject of the verb complement
(VCOMP). Hence the top-most node of the pa~e tree eventually has a
feature bundle something like:

~'ubject: {bundle of features for NP subject "the gift"}
predicate: 'persuadc<(T Subject)(T ObjectXTVcomp)>'
3bjecr [bundle of features for NP Object "the baby"}

" \ COPIED
/erb
3omplement: ~Subject: {bundle ~f features for NP subject "the baby"a~

"VCOMP") ~.Predicate: 'go((TSubject)>' ..J

Note l:ow the Object features have been copied from the Subj~'t
features of the Verb Complement, via the notation ~k..~cribed above, but
the Predicate features of the Verb Complement were leR behind.
The satisfiability analogue of this machinery is almost identical:

Phrase structure U'ee:

A f Ti"'~T COMP

D U m ~ k

One now attaches a "control equation" to the A i node that forces the Assi=n
Feature bundle From the TiCOMP side co be lifted up to gct merged iuto the
A.~si~n feature bundle of the T i node (and then, in turn, to become merged at
the topmost node of the tree by the usual Full copy up-and-down arrows):
(r TiCOMP Assign) = (TAssign)

Note how this is just like the copying of the Subject Features of a Verb
Complcmcnt into the Object position of a matrix clause.

4. REI EVANCE OF COMPI.EXITY RESUI.TS ,~N[') CONCLUSIONS
Thc demons~ation of the previous section shows that LFGs have enough
power to "simulate" a probably computationally intractable problem. But
what are we to make of this result? On the positive side, a complexity resuR
such as this one places the LFG theory more precisely in the hierarchy of
complexity classes. Ifwe conjecture, as seems reasonable, that LFG language
recognition is actually in the class NP (that is, LFG recognition can be done
by a non-deterministic Turing machine in polynomial ~rne), then LFG
language rccognitiun is NP-complete. (This conjecture seems reasonable
because a non-determfnistic "luring machine should be able to "guess" all
Feature propagation solutions using its non-deterministic power - including
any "long-distance" binding solutions, an LFG device not discussed here.
Since checking candidate solutions is quite rapid - it can be done in n 2 time
or less, as described in [$] - r~ognition should be possible in polynomial
time on such a machine.) Comparing this result to other known language
claas~ note that context-sensitive language recognition is in the cia~
polynomial space ("PSPACE'). since (non-deterministic) linear bounded
automata generate exactly the class of context-sensitive languages.
(Non-deterministic and deterministic polynomial space classes collapse
together, because of Savitch's wcll-known result [9] that any Function
computable in non-dcterminL'~ic space N can be computed in demrmini,,,~
space N2.) Funhennore, the class NP is clearly a subset of PSP^CE (since i f
a function uses Space N, it must use at least Time N), and it is suspected, but
not known for certain, that NP is a proper subset of PSPACE. (This being a
Form of the P = N P question once again.) Our conclusion is that it is likely
that LFG's generete a proper subset of the context-sensitive languages. (In [81
it is shown that this includes some strictly context-sensitive languages.) It is
imeresting that several other "natural" extensions of the c o n t e x t - ~
languages - notably, the class of languages generated by the so-called
-mdexcd grammars" - also generam a subset of the conteat-sensitive
languages, including those su'ictly context-sensitive languages shown to be
generable hy LFGs in [8], but are provably NP-eomplete (soc [21 for proofs).
Indeed. a cursory look at the power of the indexed grammars at least sugg~s
that they might subsume the machinery of the LFG theory; this would be a
good conjecture to check.
On the other ~ide of d~e coin. how might one restrict [.FG theory further so
az ~o avoid possible intractability? Several c~ape hau:hcs immediately come
to mind; thc-ze will simply be listed here. Note that all of these "fixes" have
the effect of adding additional consu'aints to t~rther restrict the LFG thcory,

I. Rule out "worst case" languages as linguistically irrelevant.
"['he probable computational inu'actability arises because co-occurrence
restrictions (cumpatible a.~signment of Xi's) can be Fumed across arbitrary
distances in the terminal string in conjunctioo with lexical ambiguity For each
terminal itcm. [f some device can be Found in natural languages that filters
out or removes such ambiguity locally (so that the choice of whether an item
is "T" or "1 -~' never depends on other itcms arbitrarily far away in the
terminal string), or if natural languages never employ such kinds of
co-~currence restrictions, dlen the reduction is theoretically relevant, but
linguistically irrelevant. Note that such a finding would be a positive
discovcry, since one would be able to filnhcr r~trict the LFG theory in its

12

attempt to characterize all and only the natural languages. This di~"overy
would be on a par with, for example, Petcrs and Ritchi¢'s observation ~hat
although the context-sensitive phrase structure roles Formally advanced in
linguistic theory have the power to generate non-context-Free languages, that
power has apparendy never been used in immediate constituent analysis [11].

2. Add "locality principlus" for recognition (or parsing).
One could simply stipulate that LFG languages meet some condition known
to ensure efficient recognizability, e.g, Knuth's [7] LR(k) restriction, suitably
extended to the case of cuntext-sonsitive languages. (See [10] For more

3. Restrict the lexicon,
The reduction depends crucially upon having a n infinite stock oflexieal items
and an infinite number of Features with which co label them - several for
each literal X r This is necessary because as CNF Formulas grow larger and
larger, the number of Iiterals can grow arbitrarily large. If, For whatever
reason, the stock of lexical items or feature labels is finite, then the reduction
method must Fail after a certain point. -[-his restriction seems ad hoe in the
case ofiexical items, but perhaps less so in dze case of Festures, (Speculating.
perhaps features require "grounding" in terms of other language/cognitive
sub-systems -- e.8,, a Feature might be required to be one of a finite number
of primitive "basis" elements of a hypothetical conceptual or sensort-motor
cognitive system.)

ACKNOWI.ED~ F.MEN'TS
[would like to thank Run Kapian. Ray Perrault. Chrisms Pnpadimimou,and
particularly Sc.,nloy Peters For various discussions about the contents of this
paper.

"This n:pon describes rescarctl done at the A~iticial Intelligence [aboratory
of" U1c Massachusetts Institute of '['cchnology. Support For the Laboratory's
artificial intelligeuce re,catch is provided in part by the Office of Naval
gc~il~h under Office of Naval Res~treh contr- ' t N00014-80_..-C-0508.
~ E[-'ERENCF.S
Ill Peters, S. and Ri~hie` R. "On the generative power of ~.nsform~tional
grammae~." hffonua¢ien Sciences 6, 1973, pp. 49-83.

[2] Rounds, W. "Complexity of recognition in intermedia~.~.tevet languag¢~"
Pmcucdings o(the 14th Ann. Syrup, on Switching Theory and Automat=,
19"/3.

[31 Ih)unds W, "A grammatical charactertzadon of" exponential-dine
languages," Proceedings of the 16th Ann. Syrup. on Switching "rheory ami
Automata, 1975. pp. 135-143.

[4] Chomsky, N. Rules and Representations New York: Columbia University
Press, 1980.

[5[Befwick, R. and Weinberg, A. The Role o f Grammars in Model~ of
Language Use., unpublished Mrr report, forthcoming, 198L

[6] Magus, M. A Theory of S~taedc Recognition for Natural Language,
Cambridge, MA: MITPreas, 1980.

[7.] Knuth, D. "On the translation of languages from left to right?,
Information and Conm)i, 8, 1965, pp. 607-639.

[8 ! Kaplan. R. and Bresuan. .[. Lexical-funclional Grommar: A Formal System
for Grammatical Representation, Cambridge, MA: MIT Cognitive Science
Occasional Paper # 13, 1981. (also Forthcoming in Bresnan, cal., The Men~l
Rep~seatation of Grammatical Relations, Cambridge, MA: MIT Press, 1981

[9] HoperoR. J. and Ulhnan, J. Introduction to Automata Theory, Languages,
and Computation, Reading, MA: Addison-Wesley, 1979.

[10] Bcrwick, R. Locality Principles and the Acquisition of Syntactic
Knowledge, MIT PhD. cUasenadon, 1981 forthcoming.

[ll] Peters, S. and Ritchie` R. Context-~ensilive bnnwdime constituent
asaal3~is: contexi-free languages revisiled~ Mathematical Systems Theory, 6:4,
1973, pp. 324-333.

