COMPUTATIONAL COMPLEXITY AND
LEXICAL FUNCTIONAL GRAMMAR

Robert C. Berwick
MIT Artificial lmcnigcnce Laboratory, Cambridge, MA

1 INTRODUCTION

An important goat of moden linguistic theory is to chamcterize as narrowly
as pussible the class of natural fanguages. An adequate linguistic theory
should be broad canugh to cover observed variation in human languages, and
yet narrow cnough to account for what might be dubbed “cognitive
demands” -- amnong these, perhaups, the demands of Icarnability and
parsability. If cognitive demands arc to.cacry any real theoretical weight, then
proswmably a language may be a (theoretically) possible huinan language,
and yet be “inaccessible™ because it is not leamable or parsable.

Formal resuits along these lines have already been obtained for certain kinds
of Transformational Generative Grammars: for example, Peters and Ritchie
(1} showed that Aspecis-style unrestricted transtormational grammars can
generate any recursively enumerabie set; while Rounds {2] [3] extended this
work by demonstrating that modestly restricted transformational grammars
(TGs) can gencrate languages whose recognition time is provably
exponential. (In Rounds’ proof, ransformations are subject to a "terminal
tength non-decreasing™ condition, as suggested by Peters and Myhiil.) Thus,.
in the worst case TGs gencrate languages whose recognition is widely
recognized to be computationally intractable. Whether this "worst case”
complexity analysis has any real import for actual linguistic study has been
the subjcct of some debate (for discussion, sce Choinsky [4]; Berwick and
Weinberg [S]). Without resolving that controversy here however, one thing
can be said: to make TGs efficiendy parsable one might provide additional
constraints. For instance, these additional strictures could be roughly of the
sort agvocated in Marcus’ work on parsing [6) -- constraints specifying that
TG-hased languages must have parsers that mect ceriain “Iccality
conditions”. The Marcus' constraints apparently amount to an extension of
Knuth's LR(k) locality condition [7) to a (restricted) version of a two-stack
detenninistic push-down automaton. (The need tor LR(k)-like restrictions in
order to ensure cfficient processability was also recognized by Rounds {2].)

Recently, a new theory of grammmar has been advanced with the explictly
stated aiin of meeting the dual demands of iearnability and parsability - the
Lexical Functional Grammars (LFGs) of Beesnan [8]. ‘The theory of .2xical
Functional Grammars is claimed to have all the dJescriptive muerits of
transformational grammar, but nonc of its computational unrufiness, In
LFG, there are no transformations (as classically described); the work
formerly ascribed to transformations such as "passive” is shouldered by
information siored in fexical entrics associated with lexical items. The
climination of transformational power nawrally gives rise to the hope that a
lexically-based system would be computationaily simpler than a
transformational one.

An interesting question then is to determine, as has already been done for the
case of certain brands of transformational grammar, just what the “worst
case™ computational complexity for the recognition of LFG languages is. If
the recognition tirne complexity for languages generated by the basic LFG
theory can be as complex as that for languages generated by a modestly
restricted transfonnational system, then presumably [LFG will also have to
add additional constraints, beyond those provided in its basic theory, in order
10 ensure efficient parsability.

The main resuit of this paper is to show that certain Lexical Functional
Granmars can generate languages whose recognition time is very likely
computationally intractable, at least according to our current understanding
of what is or is not rapidly suivabie. Bricfly, the demoenstration procecds by
showing how a problem that is widely conjectured to be computationally

difficult -~ namely, whether there exists an assignment of 1's and Os (or “T"s’

g

and “I™s) to the litcrais of a Boolean formula in conjunctive nonnal forn that
mnakes the formula cvaluate to “1” (or "true™) -~ can be rc-expressed as the
problem of recognizing whether a particular string is or is not a member of
the language generated by a certain lexical functional grammar. This
“reduction” shows that in the worst case the recognition of 1.FG languages

-

can be just as hard as the original Boolean satisfiability problem. Since it'is
widcly conjectured that there cannot be a polynomial-time. algorithm for
satisfiability {the problem is NP-complete), there cannot be a polynomial-time
recognition algorithm for LFG’s in general either. Note that this resuit
sharpens that in Kaplan and Bresnan 8] there it is shown only that LFG's
(weakly) gencrate some subset of the class of context-sensitive languages
(including some strictly context-sensitive languages) and therefore, in the
worst case, exponential time is known to be gufficient (though not necessary)
to recognize any LFG language. The resuit in (8] thus does not address the
question of how much time, in the worst case, is necessary to recognize LFG
languages. The result of this paper indicates that in the worst case more than
polynomial time will probably be neccssary. (The reason for the hedge
"probably™ will become apparent belows; it hinges upon the central unsolved
conjecture of current complexity theory.) In short then, this result places the
LG languages more precisely in the complexity hicrarchy.

It also turns out to be instructive to inquire into just why a lexically-based
approach can wm out © be compuwationally difficult, and how
compurational tractability may be guarantced. Advocates of lexically-based
theories may have thought (and some have cxplicitly stated) that the
banishment of transformations is a computationally wise move because
transformations are computationally “expensive.” Eliminate the
transformations. so this casuai argument goes, and one has climinated all
compuitational problems. intrigningly though, whea one examines the proof
to be given below, the computational work done by transfoninations in older
theorics re-emerges in the lexical grammar as the problem of choosing
between alternative categorizations for lexical items -~ deciding, in a manner
of speaking, whether a particular terminal item is a Noun or a Verb (as with
the word kiss in English), 'This power .of choice, coupied with an ability to
express co-occurrence constraints over arbitrary distances across terminal
tokens in a string (as in Subject-Verb number agreement) scems to be ali that
is required to make the recognition of LFG languages intractable. The work
done by transformations has becn exchanged for work done by lexical
schemas, but the overall computational burden remains roughly the same.

This leaves the question posed in the opening paragraph: just what sorts of

constraints on natural languages are required in order to cnsure efficient

parsability? An informal argument can_be made that Marcus’ work [6)

provides a good first attack on just this kind of characterization. Marcus'
claim was that languages easily parsed (not "garden-pathed™) by people could
be preciscly modeled by the languages easily parsed by a certain type of
restricted. deterministic, two-stack parsing machine. But this machine can be
shown to be a (weak) non-canonical extension of the LR(k) grammars, as
proposed by Knuth [S].

Finally, this paper will discuss the relevance of this technical result for more
down-to-carth computational linguistics. As it turns out, even though genera]
LFG’s may well be computationally intractable, it is casy to imagine a varicty
of additional constraints for LFG theory that provide a way Lo sidestep
around the reduction argument, All of these additional restrictions amount
making the LFG thcory more restricted, in such a way that the reduction
argument cannot be made to work. For cxampie, one cffective restriction is
to stipulate that there can only be a finite stock of features with which to label
lexical items. In any case, the moral of the story is an unsurprising one:
specificity and constraints can absolve a theory of computational
intractability. What may be more surprising is that the rcquisite locatity
constraints scem to be uscful for a variety of theories of grammar, from
transformational grainmar to lexical functional grammar.,

2 AREVIEW QF REDUCTION ARGUMENTS

The demonstration of the computational complexity of I.FUs rcties upon the
standard compiexity-theoretic technique of reductivg. Because this method
may be unfumiliar to many readers, a short review is presented immediately
below; this is followed by a sketch of the reduction proper.

The idea behind the reduction technique is to take a difficult problem, in this
case, the probiem of determining the sausfiability of Boolean formulas in
conjunctive normai form (CNF), and show that the known problem can be
quickly transformed into the problem whose compiexity remains to be
determined, in this case, the probiem of deciding whether a given string is in
the language gencraied by a given lexical Functional Grammar. Before the
reduction proper is reviewed, some definitional groundwork must be
presented. A Boolean formula in conjunctive normal form is a conjunction of
disjunctions. A formula is satisfiable just in casc there exists some assignment
of Ts and F's (or I's and 0's) to the literals of the formuia)(.l that forces the
evaluation of the entire formula to be T; otherwise, the formuia is said to be
unsatisfiuble. For vxample, - - m
(XX VXA VX VX)OAX VX, VX))

E satisfiable, sincc_ the assignment l£ X2=T (hence Xzz), X3=F (hence
X3='|'). X.,=F (X.,=T). X1=T (X1=F). and X4=F makes the whole
formula cvalute to “T™. ‘The reduction in the proof below uscs a somewhat
more restricted format where every term is comprised of the disjunction of
exacdy three literals, so-called 3-CNF(or "3-SAT™). This restriction entails
no loss uf generality (sce Hoperoft and Ullman, (9], Chapter 12), since this
restricted furmat is also NP-complete.

How does a rcduction show that the LFG recognition problem must be at
least as hard (computationally spcaking) as the original problem of Boolean
satisfiability? ‘I'he answer is that any decision procedure for { G recognition
could be uscd as-a correspondingly fast procedure for 3-CNF-. as follows:

(1) Given an instance of a 3-CNF problem (the question of whether there
exists 3 satisfying assignment for a given formula in 3-CNF), apply the
transfurmational algoridim provided by the reduction: this algorithin is itself
assumed 10 exccute quickly, in polynomial time or less. The algorithm
outputs a corresponding LFG decision problem, namely: (i) a lexical
functional grammar and (ii) a string w be tested for membership in the
language generated by the 1.FG. The LFG recognition probicm represents or
mimics the decision probtem for 3-CNF in the sense that the "yes” and “no*
answers to both sadisfiability problem and membership problem must
coincide (if there is a satisfying assignment. then the corresponding LFG
decision problem should give a "yes” answer. etc.).

(2) Solve the LFG decision problem -- the string-LFG pair ~ output by Step
1: if the string is in the LLFG language, the original formula was satisfiable; if
not, unsatisfiable.

(Mote that the grammar and string so constructed depend upon just what
formula is under analysis: that is. for cach different CNF formula, the
procedure presented above outputs a different LFG grammar and string
comhination. In the LFG case it is important (o remember that "grammar™
really means “grammar plus lexicon” -~ 23 one might cxpect in a
lexically-based theory. S. Peters has observed that a slighily different
reduction allows one to keep most of the grammar fixed across all possible
input formulas, constructing only different-sized lexicons for each different
CNF formula; for details, sce below.)

To sec how a reduction can tell us something about the “worst case™ time or
space cumplexity required to recognize whether a string is or is not in an LFG
language, suppose for cxample that the decision procedure for determining
whether a string is in an LFG language wkes polynomial time (that is, takes
time n on a deterministic Turing machine, for some integer k, where n= the
length of the input string). Then. since the compaosition of two polynomial
algorithms can be readily shown to take only poiynomial time (see [9)
Chapter 12), the cntire process skewched above, from input of the CNF
formula to the decision about its satisfiability, will take only polynomial time.

However, CNF (or 3-CNF) has no known polynomial time aigorithm, and
indeed, it is considered exceedingly unlikely that one could exists. Thercfore,
it is just as unlikely that LFG recognition could be done (in general) in
polynomial time,

The theory of computational complexity has a much more compact term for
problems like CNT: CNF is NP-compicte. This label is easily deciphered:
(1) CNF is in the ¢lgss NP, that is, the class of languages that can be

“recognized by a gpp-deterministic Turing machine in polynomiaf time.

(Hence the abbreviation “NP”, for “non-deterministic polynomial”. To see
that CNF is in the class NP, note that onc can simply guess all possible
combinations of truth assignments to literals, and check each guess in
polynomial time.)

(2) CNF is cumplete, that is, all other languages in the class NP can be quickly
reduced to some CNF formuia. (Roughly, one shows that Boolean formulas
can be used to “simulate” any valid computation of a non-deterministic
Turing machine.)

Since the class of problems solvable in polynomial time on a deterministic
Turing machine (conventionally notated, P) is trivially contained in the class
50 solved by a nondeterministic Turing machine. the class P imust be a subset
of the class NP. A well-known, well-studied. and still open question is whther
the class P is a proper subsct of the class NP, that is, whether there are
problems solvable in non-dcierministic polynomial time that cannot be
solved in deterministic polynomial time. Becausc all of the several thousand
NP-complete probicms now catalogued have so far proved recaicitrant to
deterministic polynomial time solution, it is widely held that P must indeed
be a proper subsct of NP, and therefore that the best possible algorithms for
solving NP-complete problems must ke more than pulynomial time (in
general, the aigorithms now known for such problems involve exponential
cumbinatorial search. in onc fashion or another; these are essentially methods
that do no better than 0 brutally simulate -- detcrministically, of course ~ a
non-deterministic machine that “gucsses” possible answers.)

To repeat the force of the reduction argument then, if ail LFG recognition
problems were solvablc in polynomial time, then the ability to quickiy reduce
CNF formulas o LFG recognition problems implies that all NP-complete
problems would be solvable in polynomial time, and that the class P=the
class NP. This possibility scems extremely remote. Hence, our assumption
that there is a fast (gencral) procedure for recognizing whether a string is or is
not in the language gencrated by an arbitrary LFG granmar must be faise,
In the terminology of complexity theory, LFG recognition must be NP-hard
- "as hard as” any other NP problem, including the NP-complete problems.
This means only that LFG recogntion is a1 least as hard as other NP-complete
problems - it could still be more difficuit (lie in some class that contains the
class NP). If one could aiso show that the languages generated by LFGs are
in the class NP, then LFGs would be shown 0 be NP-compicte. This paper
stops short of proving this last claim, but simply conjectures that LFGs are in
the class NP,

3. A SKETCH OF THE REDUCTION

To carry out this demonstration in detail, one must explicidy describe the
ransformation procedure that takes as input a formula in CNF and outputs a
corresponding LFG decision problem ~ a string to be tested for membership
in a LFG language and the LFG itself. One must also show that this can be
done quickly, in a number of steps proportional to (at most) the length of the
original formula to some polynomial power. let us dispose of the last point
fist. The string to be tested for membership in the LFG language will simply
be the original formula, sans parentheses and logical symbols; the LFG
recognition problem is to find a well-formed derivation of this string with
respect to the grammar (o be provided. Since the actual grammar and string
one has 0 write down to “simulate” the CNF problem tum out to be no
worse than linearly farger than the original formula, an upper bound of say,
time n-cubed (where n=length of the original formuia) is more than
sufficient to construct a corresponding LFG; thus the reduction procedure
itself can be done in polynomial time, as required. This paper will therefore
have nothing further to say about the time bound on the transformation
procedure.

Some caveats are in order before embarking on a proof sketch of this
reduction. First of all, the relevant details of the LFG theory will have to be
covered on-the-fly; see [8] for more discussion.’ Also, the grammar that is
output by the reduction procedure will pog look very much like a grammar
for a nawral language, dlthough the grammatical devices that will be
empioyed will in cvery way be those that are an essendal part of the LFG
theory. (namely, feature agreement, the lexical analog of Subject or Object
“control”, lexical ambiguity, and a garden varicty context-free grammar.) In
other words, aithough it is most unlikely that any paturul language would
encode the sadsfiability problem (and hence be intractable) in just the
manner outlined below, on the other hand, no “exotic” LFG machinery is
used in the reduction. Indeed, some of the more powerful LFG notational
formalisms -- long-distance binding, existential and ncgative feature operators
= have not been exploited. (An carlier proof made use of an cxistential
operator in the feature machinery of. LFG, but the reduction presented here
does not.)

To make good this demonstration one must set out just what the satisfiability
problein is and what the decision problem for membership in an LFG
language is. Recall that a formula in conjunctive normal form is satisfiable
just in case every conjunctive term evaluates o (ryg, that is, at least gne literal
in ¢ach term is true. The satisfiability problem is to find an assignment of T"s
and F's to the literals at the hottom (note that the complement of literals is
also permitted) such that the root node at the w0p gets the value "T” (for
trug). How can we get a lexical functional grammar to represent this
problem? What we want is for satisfyjng assignments 10 correspond to to
well-formed sentences of some corresponding LFG grammar, and
non-satisfving assignments to correspond to sentences that are pog
well-formed. according to the LFG grammar:

satisfiable non-satisfiable

formyla w formyla w

sentence w' IS sentence w' IS NOT
in LFG language L(G) in LFG language L(G)

Figure 1. A Reduction Must Preserve Solutions to the Original Problem

Since one wants the satisfying/non-satisfying assignments of any particular
formula to map over into well-formed/ill-formed scntences, one must
obviously exploit the LFG machinery for capturing well-formedness
conditions for sentences. First of all, an LFG contains a base context-free
grammar. A minimal condition for a sentence (considered as a string) to be in
the language generated by a lexical-functional grammar is that it can be
gencrated by this base grammar; such a sentence is then said to have a
well-formed constityent strycture, For example, if the base rules included
S=>NP VP; VP=>V NP, then (glossing over details of Noun Phrase rules)
the sentence John kissed the baby would be well-formed but John the baby
kissed would not. Note that this assumes, as usual, the cxistence of a lexicon
that provides a categorization for each terminal item, c.g., that baby is of the
category N, kissed is a V, cie. Importantly then, this well-formedness
condition requires us to provide at least one legitimate parse trce for the
candidate sentence that shows how it may be derived from the underlying
LFG base context-free grammar. (There could be more than one legitimate
trec if the underlying grammar is ambiguous.) Note further that the choice of
catcgorization for a lexical item may be crucial. 1f baby was assumed to be of
category V., then both sentences above would be ill-formed.

A second major component of the LFG theory is the provision for adding a
set of so<called firnctional equations to the basc context-free rules. These
equations are used to account for that the co-occurrence restrictions that are
so much a part of natural languages (¢.g., Subject-Verb agreement). Roughly,
one is allowed to associatc featurey with lexical cntrics and with the
non-terminals of specified context-free rules: these features have yalues. The
cquation machinery is used to pass features in certain ways arcund the parse
tree, and conflicting values for the same fcature arc cause for rejecting a
candidate analysis. To take the Subject-Verb agreement exampie, consider
the sentence the baby is kissing John. The lexical entry for baby (considered

as a Noun) might have the Number feature, with the value singular. The
lexical entry for is might assert that the gumber feature of the Sybicgt above
it in the parsc trce must have the value gingular; meanwhile, the feature
values for Subject are automatically found by another rule (associated with
the Noun Phrase portion of S=»NP VP) that grabs whatever featurcs it finds
below the NP node and copies them up above to the S node. Thus the S node
gets the Subject fcature, with whatever value it has passed from daby below -
namely, the value sipgulag; this accords with the dicates of the verb is, and all
is weil. Similarly, in the sentence, the boys in the band is kissing John, boys
passes up the number value plural, and this clashes with the verb’s constraint;
as a result this sentence is judged ill-formed:

S feawres: Subject Number:Singuiar or Plural?
/7 = CLASH!

’ i,

L
NP S
'

)
Number:plural

1

~
\
v"} Number:singular
|
the boys in the band s’

kissing John.

Figure 2. Co-occurrence Restrictions are Enforced by Featre Checking in an
LFG.

It i3 important to note that the feature compatability check requires (1) a
particular constitucnt structure tree (a parse tree); and (2) an assignment of
terminal items (words) to lexical categories - e.g., in the first Subject-Verb
agreement example above, baby was assigned to be of the category N, a
Noun. The tree is obviously required because the feature checking
machincry propagates values according to the links specified by the
derivation tree; the assignment of terminal items to categories is crucial
because in most cases the values of features are derived from those listed in
the fexical entry for an item (as the value of the pumber feature was derived
from the lexical entry for the Noun form of baby). One and the same
termiial item can have two distinct lexical entrics, corresponding to distinct
lexical categorizations; for example, baby can be both a Noun and a Verb. If
we had picked baby to be a Verb, and hence had adupted whatever features
are associated with the Verb entry for baby to be prupagated up the tree, then
the string that was previously well-forined, the baby is kissing John would
now be considered deviant, If a string is ill-formed under ail poussible
derivation trees and assignments of features from possible lexical
calegorizations, then that string is not in the language generated by the LFG.
The possibility of multiple derivation trees and lexicul categorizations (and
hence multiple feature bundles) for one and the same terminal item plays a
crucial rule in the reduction proof: it is intended to capwre the satisfiability
problem of deciding whether t give a literal X, a value of "T™ or "F™. '

Finally, LFG also provides a way to express the familiar patterning of
grammatical relatons (c.g.. "Subject” and "Object”) found in natural
language. For example, transitive verbs inust have objects. This fact of life
(expressed in an Aspects-style transformational grammar by subcategorization
restrictions) is captured in LFG by specifying a so-called PRED (for
predicate) feature with a Verb: the PRED can describe what grammatical
relations like “Subject” and “"Object” musgt be filled in after feature passing
has taken place in order for the analysis to be well-formed. For instance, a
transitive verb like kiss might have the pattern, kiss<{SubjectObject)), and
thus demand that the Subject and Object (now considered to be "features™)
have some value in the final analysis. The values for Subjoct and Object
might of course be provided from some other branch of the parse tree, as
provided by the feature propagation machinery; for exampie, the Qbject
feature could be filled in from the Noun Phrase part of the VP expansion:

SUBJECT: Sue
S features] PRED : ‘kiss<(Subject)(Object)?
/ OBJECT : Joha
7? P
sue ¥ bip.
kiss John

Figure 3. Predicate Tempiates Can Demand That a Subject or Object be
Filled In. '

But if the Objcct were po filled in, then the analysis is declared functionally
incomplete, and is ruled out. This device is uscd to cast out sentences such as,
the baby kissed.

So much for the LFG machincry that is required for the reduction proof.
(There are additional capabilitics in the LFG theory, such as long-distance
binding, but these will not be called upon in the demonstration beiow.)

What then does the LFG representation of the satisfiability problem look
like? Basically, there are three parts to the satisfiability problem that must be
mimicked by the LFG: (1) the assignment of valucs to literuls, e.g., X2->"I":
X ;)"P‘; (2) the co-ordination of value assignments across intervening litcrals
in the formula; c.g., the literal X, can appear in several different torms, but
one is nut ullowed to assign it the value "1™ in one term and the value "F™ in

another (and the same gocs for the complement of a literal: if X, has the

o

value "1™, Yz cannot have the value). and (3) satistiability must
correspond to LIFG well-formedness, i.e., cach term has the truth value "T™
just in case at lcast gng literal in the term is assigned T~ and all terms must
evaluate to "1™

Let us now go over how these components may be reproduced in an LFG,
one by one. .
(1) Assignments: The input string o be tested for membership in the LFG

will simply be the original formula, suns parenthescs and logical symbols; the:

terminal items are thus just a string of X.l‘s. Recall that the job of checking
the string for well-formedness involves finding a derivation tree for the string,
solving the ancillary co-occurrence cquations (by feature propagation), and
checking for functivnal completencss. Now, the context-free grammar
constructed by the transfonmation procedure will be set up so as to generate a
virual copy of the associated formuia, down to the point where literals X, are
assigned their vatues of T~ or "F~. If the original CNF form had N terms,
this part of grammar would look like:

S=b'l'1 Tz - Tll (one “T™ for each term)
T=Y, Yj Y, (one triple of Y's per term)

Several comments are in order here.

(1) The context-free base that is built depends upon the original CNF
formula that is input since the number of terms, o, varies from formula to
formula. In Stanicy Peters’ improved version of the reduction proof, the
context-free base is fixed for all formulas with the ruies:

S=S5 §

$= TT T TorS=TTForTF ForT F Tor...

(remaining twelve expansions that have at least one T in each triple)

The Peters grammar works by rccursing until the right number of terms is
gencrated (any sentences that are too long or too short cannot be matched to
the input formula). Thus, the number of terms in the original CNF formula
need not be explicitly encoded into the base grammar.

(2) The subscripts i.j, and k depend on the actual subscripts in the original
formula

(3) The Yi are ngt terminal items, but arc non-terminals.

(4) This grammar will have to be slightly modificd in order for the reduction
to work, as will become apparent shortly.

10

Note that so far there are no ruies to extend the parse tree down to the Jevel
of terminal itcms, the X.l. The next step does this and at the same time adds
the power to choose between "T™ and “F~ assignments to litcrals. One
includes in the context-free base graminar {wo productions deriving each
terminal item Xi, namely, XiT=bX.l and XiF=in. corresponding to an
assignment of “T™ or "F~ to the formuia literal X, (it is important not to get
confuscd here between the literals of the formula ~ these are terminal
elements in the lexical functional grammar ~ and the literals of the grammar
- the non-tcrminal’ symbols.) One must also add, abviously, the rules
Yi=oXiT|XiF. for cach i, and rules corresponding to.the ncgativns of

variabies, %;T=>X; Note that these are not "exotic” LFG rules: exactly the
same sort of rulc is required in the baby case, i.c., N=>baby or V=5 baby,
corresponding to whether baby is a Noun or a Verb, Now, the lexical entries
for the "X;T" categorization of X; will look very diffcrent from the "X FT
categorization of X, just as one might expect the N and V forms for baby to
be different. Here is what the cntrics for the two categorizations of 7(.l look
like:

X XT (Ttuth-assignmen)=T
(Tassign Xi)=T
X XF (Tassign X) =F

The feature assignments for the negation of the literal X; is simply the dual of

the entries above (since the sense of "T™ and "F™ is reversed):

Y: XT (Tuuth-assignmen)=T
(Tassign X)=F.

Y. Xr

: XF (tassiga X) =T

The role of the additional “truth-assignment” feature will be explained
below.

Figure 4. Sample Lexical Entries 0 Reproducc the Assignment of T's and F's
t a literal X,

The upward-directed arrows in the entries reflect the LFG feature
propagation machinery. In the case of the XiT entry, for instance, they say 0
"make the Truth-assignmens feature of the node abgye XT have the value
“T", and make the X, portion of the Assign feature of the node above have
the value T." This fcature propagation device is what reproduces the
assignment of T's and F'$ to the CNF literals. [f we havc a triple of such
elements, and at least one of them is expanded out o X.‘T. then the feanice
propagation machinery of LFG will meree the common feature names into
one large structure for the node above, reflecting the assignments made;
morcover, the term will get a filled-in truth assignment value just in case at
least one of the cxpansions selected ant XT path:

T, feature structure: [{ ruth-assignment=
Assignf X, =
X]=
X, =F
Y Y Y
i J X
R
XT XF XF
terminaf ‘ r |
saing: X Xj Xy

Figurc 5. The LFG Feature Propagation Machinery is Usced to Percolate
Featurc Assignments from the Lexicon.

(The features are passed transparently through the intervening

Y nodces via the LFG "cupy" device, (T=1):

dns simply mecans that ail the features of the node below the node to
which the "copy” up-and-down arrows are attachcd are to be

the samec as those of the node above the up-and-down arTows.)

It is plain that this mechanism mimics the assignment of values t literals
required by the satisfiability problem.

(2) Co-ordination of assignments: One must also guarantee that the)(.l value
assigned at one place in the tree is not contradicted by an X; or X, clsewhere.
To ensure this, we use the LFG co-occurrence agrecment machinery: the
Assign feature-bundle is passed up from each term T, to the highest node in
the parse tree (one simply adds the (T =) notation to each T, rule in order to
indicate this). The Assign feature at this node will thus contam the ypion of
all gssigp feature bundles passed up by all terms. I any X, values conflict,
then the resulting structure is judged ill-formed. Thus, only compatible X‘
assignments are well-formed:

features: Assign: E(.,:Torl”]

----- Cl&l
7, %
> o~
Y7 Y7
| \
)\(.,T XT
’1(7 %
(Tassign X;)=T (Tassign X,=F)

Figure 6, The Featrc Compatability Machinery of LFG can Force
Assignments to be Co-ordinated Across Terms.,

(3) Prescrvation of satisfying assignments. Finally, onc has o reproduce the
conjunciive character of the 3-CNF prublem -- that is, a sentence is satisfiable

(well-formed) iff cach term has at least one literal assigned the value "T". .

Part of the disjunctive character of the problem has aircady been encoded in
the feature propagation machinery prescnted so far: if at least one X, in a
term T, expands to the lexical entry X.T, then the tryth-assignment feature
gets the value T. This is just as desired. Ifone, two, or three of the literals X,
in a term select X.IT, then Tl‘s truth-assignment feature is T, and the analysis
is well-formed. But how do we rule out the case where all three X;'s in a term
select the “F" path, X;F? And how do we ensure that glj terms have at least
one T below them?

Buth of these problems can be solved by resorting to the LFG functional
completeness constraint. The trick will be to add a Pred feature to a
“dummy" node artached to cach term; the sole purpose of this feature will be
to refer to the feature Truth-assispment, just as the predicate template for the
ransitive verb %iss® mentions the feature QObicgt. Since an analysis is not
well-formed if the “gratnmatical rclations” a Pred mentions are not filled in
froin somewhere, this will have the effect of forcing the Tnuth-assignment
teature 10 get filled in every term. Since the “F lexical entry does not have a
Liugy-agsignment value, if alf the X, in a term triple select the X.IF path (all
the literals are "F™) then gg Truth-assignment fcature is ever picked up from
the lexical entrics, and that term never gets a Truth-assignment fcature. This
violates what the predicate template demands, and so the whole analysis is
thrown out. (The ill-formedness is cxactdy analogous to the case where a
transitive verb never gets an Object.) Since this condition is applied to ecach
term, we have now guarantecd that ¢achl term must have at least oge literat
below it that sclects the T path - just as desired. To actually add the new
predicate template, one simply adds a new (but dummy) branch to each term
T,, with the appropriate predicate constraint attached to it:

11

T, featuregi{Pred: ‘dummyZ((TTruth'assignment)j

/ \\Tmth-aslgnment—T

Dummy2 .'
lexical entry: ’ * e
‘dummy2: ':' YOXT ORF X
(1 Pred)= \ | |

‘dummy24(T Truth -assignment)>’ \\ X;
\

\
(ITruth-assignment) =T
Figure 7. Predicates Can be Used to Force at least one "™ Per Term.

There is a final subte point here: one must prevenr the Pred and
Truth-assignment features for each term from being passed up to the head
"S" node. The recason is that if these features were passed up, then since the
LFG machinery automatically merges the values of any featurcs with the
same name at the topmost node of the parse tree, the LFG machinery would
force the union of the feature vaiues for Pred and Truth-assignment over all
terms in the analysis tree. The result would be that if agy term had af [east
one ™ (hence satisfying the Truth-assignment predicate template in at least .
one term), thcn the Pred and Truth-assignment would get filled in at the
topmost node as weil. The string below would be well-formed if at least one -
term were T, and this would amount to a disjunction of disjunctions (an
“OR" of "OR"s), not quite what is sought. To climinate this possibility, one.
must add a final trick: eagh term T’ is given separate Predicate,
Truth-assignment. and Assign featurcs, but only the Assign featurc is
propagated to the highest node in the parse tree as such. In contrast, the
Predicate and Truth-assignment features for cach term are kept “protwected”
from merger by storing them under separate feature headings labelled
TynT o The means by which just the ASSIGN featurc bundle is lifted out is
the LFG analogue of the natural language phenomenon of Subject or Object
“controi”. whereby just the features of the Subject or Object of a lower clause
are lifted out of the lower clause to become the Subject or Object of a matrix
sentence; the remaining features stay unmergeable because they stay
protected behind the individually labelled terms.

To actually "implement” this in an LFG onc can add two new branches to
each Term cxpansion in the base context-free grammar, as well as two
“contruf” cquation specifications that do the actual work of lifting the

features from a lower clause to the matrix sentence:
Natural language case (from (8}, pp. 43-45):

The girl persuaded the baby © go.

(part of the) lexical entry for
persuaded:
V (1 VCOMP Subject)=(T Object)

The notation (T VCOMP Subject)=(T Object) — dubbed a “control
equation™ -- means that the features of the Object above the V(erb) node are
0 be the same ss those of the features of the Subject of the verb complement
(VCOMP). Hence the top-most node of the parse wrec cventually has a
feature bundle sonething like:

ubject: {bundle of features for NP subject “the girl"} _ I
redicate: ‘persuade<(T Subject)(T Object)(T Veomp)>’
bject: {bundle of f‘ezuur!:‘sh for NP Object “the baby"}

N
% COPIED
erh \
omplement: | Subject: {bundle of features for NP subject “the baby™
"VCOMP™)

Predicate: ‘go<{TSubject)>’

Note lrow the Object features have been copied from the Subject
features of the Verb Complement, via the notation described above, but
the Predicatc features of the Verb Complement were left behind.

The satisfiability analogue of this machincry is almost identical:

Phruse structure tree:

T
/ ~
Al T.COMP

1

Dummy2 Yi Yj X
One now attaches a “control cquation” t the 4, node that forces the Assign
feature bundle fron the T,.COMP side to be tifted up to get merged into the
Assign feature bundle of the T; node (and then, in turn, to become merged at

the twopmost node of the tree by the usual full copy up-and-down arrows):
{r 'l'iCOMP Assign) = (T Assign)

Note how this is just like the copying of the Subject features of a Verb
Complement into the Object positivn of a matrix clause.

4. RELEVANCE OF COMPLEXITY RESULTS AND CONCLUSIONS
The demonstration of the previous scction shows that LFGs have enough
power to “simulate” a probably computationally intractable probicm. But
what are we to make of this result? On the positive side, a complexity result
such as this one places the LFG theory more precisely in the hierarchy of
complexity classes. [f we conjecture, as scems reasonable, that LFG language
recognition is actually in the class NP (that is, LFG recognition can be done
by a non-deterministic Turing machine in polynomial tme), then LFG
language recognition is NP-compicte. (This conjecture seems reasonable
berause a non-deterministic Turing machine should be able to "guess” all
feature propagation solutions using its non-deterministic power - including
any "long-distance™ hinding solutions, an [.LFG device not discussed here.
Since checking candidate solutions is quite rapid - it can be done in a? time
or less, as described in {8] ~ rccognition should be possible in polynomial
time on such a machinc.) Comparing this result to other known language
classes, note that context-sensitive language rccognition is in the class
polynomial space ("PSPACE"), since (non-dcterministic) linear bounded
automata generate exactly the class of context-sensitive languages.
{Non-dcterministic and deterministic polynomial space classes collapse
together, because of Savitch's weil-known resuit [9] that any function
computabic in non-deterministic space N can be computed in detcrministic
space N2) Furthennore, the class NP is clearly a subset of PSPACE (since if
a function uses Space N, it must usc at least Time N), and it is suspected, but
not known for certain, that NP is a proper subset of PSPACE. (This being a
form of the P=NP question once again.) Our conclusion is that it is likely
that LFG's generate a proper subset of the context-sensitive languages. (In (8]
it is shown that this includes some strictly context-sensitive fanguages.) Itis
intercsting that several other “natural® extensions of the context-free
languages — notably, the class of languages gencrated by the so-cailed
“indexed grammars” —~ also gencrate a subsct of the contex¢-scnsitive
hanguages, including those strictly context-sensitive languages shown to be
gencrable by LFGs in (8), but are provably NP-complete (sce {2] for proofs).
Indeed, a cursory look at the power of the indexcd grammars at lcast suggests
that they might subsume the machinery of the LFG theory; this would be a
goud conjecture to check.

On the other side of the coin. how might one restrict L.FG theory further so
as to avoid possible intractability? Several cscape hatches immediately come
to mind; these will simply be listed here. Note that all of these “fixes” have
the cffect of adding additional constraints to turther restrict the LFG theory.

1. Rule out "worst case” languages as linguistically irrelevant.

The probabie computational intractability arises because co-occurrence
restrictions (compatible assignment of X;'s) can be forced across arbitrary
distances in the terminal string in conjunction with lexical ambiguity for cach
terminal item. [f some device can be found in natural languages that filters
out or removes such ambiguity locally (so that the choice of whether an item
is "T" or "F" never depends on other items arbitrarily far away in the
terminal string), or if natural languages never cmploy such kinds of
co-uccurrenee restrictions, then the reduction is theoretically relevant, but
linguistically irrelevant. Note that such a finding would be a positive
discovery, since one would be able w further restrict the LFG theory in its

12

atrempt to characterize all and only the natural languages. This discovery
would be on a par with, for cxample, Peters and Ritchic's observation that
although the context-sensitive phrase structure rules formally advanced in
linguistic theory have the power o generate non-context-free languages, that
power has apparently never been used in immediate constituent analysis [11].

2 Add "locality principles”™ for recognition (or parsing).

One could simply stipulate that LFG languages meet some condition known
to ensure cfficient recognizability, e.g., Knutlt's {7] LR(k) restriction, suitably
extended to the case of context-sensitive languages. (See {10] for more
deails.)

3. Restrict the lexicon.
The reduction depends crucially upon having an infinite stock of lexical items
and an infinitc number of features with which to label them -~ several for
each literal X This is nccessary because as CNF formulas grow larger and
larger, the number of literals can grow arbitrarily large. If, for whatever
reason, the stock of lexical items or feature fabels is finite, then the reduction
method must fail after a certain point. This restriction secms ad hoc in the
case of lexical items, but perhaps less so in the case of features. (Speculating,
perhaps features require “grounding” in terms of other language/cognitive
sub-systems -- ¢.g., a feature might be rcquired o be onc of a finitc number
of primitive "basis” elements of a hypothctical conceptual or sensori-motor
cognitive system,)

WLE
[would fike to thank Ron Kaplan, Ray Perrault. Christos Papadimitriou, and
particularly Stunley Peters for various discussions about the contents of this
paper. B
This report describes rescarch done at the Artiticial Intelligence I aboratory
of the Massachusetts Institute of Technology. Support for the Laboratory’s
artificial intelligence rescarch is provided in part by the OffTice of Naval
Rescarch under Otfice of Naval Research contract N00014-80-C-050S.
{1] Peters, S. and Ritchie, R. "On the generative power of transformational
granmnars,” Infoanation Sciences 6, 1973, pp. 49-83.

{2} Rounds, W, "Complexity of rccognition in intermediate-level languages,”
Procucdings of the 14th Aun. Symp. on Switching Theory and Automata,
1973,

(31 Rounds W. "A grammatical characterization of cxponcntial-time
languages,” Proccedings of the 16th Ann. Symp. on Switching Theory and
Automata, 1975, pp. 135-143,

{4] Chomsky, N. Ruies and Representations New York: Columbia University
Press, 1980.

(5] Berwick, R. and Weinberg, A. The Role of Grammars in Models of
Language Use, unpublishcd MIT repory, forthcoming, 1981

[6] Marcus, M. A Theory of Syntuctic Recognition for Natural Language,
Cambridge, MA: MIT Press, 1980.

7] Knuth, D. "Oa the translation of languages from left to right”,
Information and Control, 8, 1968, pp. 607-639.

(8] Kaplan, R. and Bresnan, J. Lexical-functional Grammar: A Formai System
Jor Grammatical Representation, Cambridge, MA: MIT Cognitive Science
Occasional Paper #13, 1981. (also forthcoming in Bresnan, ed., The Mentai
Representation of Grammatical Relations, Cambridge, MA: MIT Press, 1981

[9] Hoperoft, J. and Ullman, J. Introduction to Automata Theory, Languages,
and Computation, Reading, MA: Addison-Wesley, 1979.

{10} Berwick, R. Locality Principles and the Acquisition of Syntactic
Knowledge, MIT PhD. dissertation, 1981 forthcoming.

{11} Peters, S. and Ritchie, R. Contexi-sensitive immediate constituent
analysis: context-free languages revisited, Mathematical Systems Theory, 6:4,
1973, pp. 324-333. :

