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Abstract  
This paper shows how to formally characterize lan- 
guage learning in a finite parameter space as a Markov 
structure, hnportant  new language learning results fol- 
low directly: explicitly calculated sample complexity 
learning times under different input distribution as- 
sumptions (including CHILDES database language in- 
put) and learning regimes. We also briefly describe a 
new way to formally model (rapid) diachronic syntax 
change. 

B A C K G R O U N D  M O T I V A T I O N :  
T R I G G E R S  A N D  L A N G U A G E  

A C Q U I S I T I O N  
Recently, several researchers, including Gibson and 
Wexler (1994), henceforth GW, Dresher and Kaye 
(1990); and Clark and Roberts (1993) have modeled 
language learning in a (finite) space whose grammars 
are characterized by a finite number of parameters or n- 
length Boolean-valued vectors. Many current linguistic 
theories now employ such parametric models explicitly 
or in spirit, including Lexical-Functional Grammar and 
versions of HPSG, besides GB variants. 

With all such models, key questions about  sample 
complexity, convergence time, and alternative model- 
ing assumptions are difficult to assess without a pre- 
cise mathematical formalization. Previous research has 
usually addressed only the question of convergence in 
the limit without probing the equally important  ques- 
tion of sample complexity: it is of not much use that a 
learner can acquire a language if sample complexity is 
extraordinarily high, hence psychologically implausible. 
This remains a relatively undeveloped area of language 
learning theory. The current paper aims to fill that 
gap. We choose as a starting point the GW Triggering 
Learning Algorithm (TLA). Our central result is that 
the performance of this algorithm and others like it is 
completely modeled by a Markov chain. We explore 
the basic computational consequences of this, including 
some surprising results about sample complexity and 
convergence time, the dominance of random walk over 
gradient ascent, and the applicability of these results to 

actual child language acquisition and possibly language 
change. 

B a c k g r o u n d .  Following Gold (1967) the basic frame- 
work is that  of identification in the limit. We assume 
some familiarity with Gold's assumptions. The learner 
receives an (infinite) sequence of (positive) example sen- 
tences from some target language. After each, the 
learner either (i) stays in the same state; or (ii) moves 
to a new state (change its parameter settings). If after 
some finite number of examples the learner converges to 
the correct target language and never changes its guess, 
then it has correctly identified the target language in 
the limit; otherwise, it fails. 

In the GW model (and others) the learner obeys two 
additional fundamental  constraints: (1) the single.value 
constraint--the learner can change only 1 parameter 
value each step; and (2) the greediness constraint--if 
the learner is given a positive example it cannot recog- 
nize and changes one parameter value, finding that it 
can accept the example, then the learner retains that 
new value. The TLA essentially simulates this; see Gib- 
son and Wexler (1994) for details. 

THE MARKOV FORMULATION 
Previous parameter models leave open key questions ad- 
dressable by a more precise formalization as a Markov 
chain. The correspondence is direct. Each point i in the 
Markov space is a possible parameter setting. Transi- 
tions between states stand for probabilities b that the 
learner will move from hypothesis state i to state j .  
As we show below, given a distribution over L(G), we 
can calculate the actual b's themselves. Thus, we can 
picture the TLA learning space as a directed, labeled 
graph V with 2 n vertices. See figure 1 for an example in 
a 3-parameter system. 1 We can now use Markov theory 
to describe TLA parameter  spaces, as in lsaacson and 

1GW construct an identical transition diagram in the 
description of their computer program for calculating lo- 
cal maxima. However, this diagram is not explicitly pre- 
sented as a Markov structure and does not include transition 
probabilities. 
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Madsen (1976). By the single value hypothesis, the sys- 
tem can only move 1 Hamming bit at a time, either to- 
ward the target language or 1 bit away. Surface strings 
can force the learner from one hypothesis state to an- 
other. For instance, if state i corresponds to a gram- 
mar that generates a language that is a proper subset 
of another grammar hypothesis j ,  there can never be 
a transition from j to i, and there must be one from i 
to j .  Once we reach the target grammar there is noth- 
ing that can move the learner from this state, since all 
remaining positive evidence will not cause the learner 
to change its hypothesis: an A b s o r b i n g  S t a t e  (AS) 
in the Markov literature. Clearly, one can conclude at 
once the following important  learnability result: 

T h e o r e m  1 Given a Markov chain C corresponding to 
a G W  TLA learner, 3 exactly 1 A S  (corresponding to 
the target grammar/language) iff C is learnable. 
Proof. ¢::. By assumption, C is learnable. Now assume 
for sake of contradiction that  there is not exactly one 
AS. Then there must be either 0 AS or > 1 AS. In the 
first case, by the definition of an absorbing state, there 
is no hypothesis in which the learner will remain for- 
ever. Therefore C is not learnable, a contradiction. In 
the second case, without loss of generality, assume there 
are exactly two absorbing states, the first S correspond- 
ing to the target parameter  setting, and the second S ~ 
corresponding to some other setting. By the definition 
of an absorbing state, in the limit C will with some 
nonzero probability enter S I, and never exit S I. Then 
C is not learnable, a contradiction. Hence our assump- 
tion that there is not exactly 1 AS must be false. 

=¢.. Assume that  there exists exactly 1 AS i in the 
Markov chain M. Then,  by the definition of an absorb- 
ing state, after some number of steps n, no matter  what 
the starting state, M will end up in state i, correspond- 
ing to the target grammar. | 

C o r o l l a r y  0.1 Given a Markov chain corresponding to 
a (finite) family of grammars in a G W learning sys- 
tem, if there exist 2 or more AS, then that family is not 
learnable. 

D E R I V A T I O N  O F  T R A N S I T I O N  
P R O B A B I L I T I E S  F O R  T H E  

M A R K O V  T L A  S T R U C T U R E  
We now derive the transition probabilities for the 
Markov TLA structure, the key to establishing sam- 
ple complexity results. Let the target language L~ be 
L~ = {sl ,  s2, s3, ...} and P a probability distribution on 
these strings. Suppose the learner is in a state corre- 
sponding to language Ls. With probability P(sj ) ,  it 
receives a string sj. There are two cases given current 
parameter settings. 

Case  I. The learner can syntactically analyze the re- 
ceived string sj. Then parameter values are unchanged. 
This is so only when sj • L~. The probability of re- 
maining in the state s is P(s j ) .  

Case  I I .  The learner cannot syntactically analyze 
the string. Then sj ~ Ls; the learner is in state s, 
and has n neighboring states (Hamming distance of 1). 
The learner picks one of these uniformly at random. If 
nj of these neighboring states correspond to languages 
which contain sj and the learner picks any one of them 
(with probability n j / n ) ,  it stays in that state. If the 
learner picks any of the other states (with probability 
( n - n j ) / n )  then it remains in state s. Note that  nj 
could take values between 0 and n. Thus the probability 
that the learner remains in state s is P(s j ) ( (  n - n j  ) /n) .  
The probability of moving to each of the other nj states 
is P ( s j ) ( n j / n ) .  

The probability that the learner will remain in its 
original state s is the sum of the probabilities of these 
two c a s e s :  ~,jEL, P(s j )  + E, jCL, (1  - n j / n ) P ( s j ) .  

To compute the transition probability from s to 
k, note that  this transition will occur with proba- 
bility 1/n for all the strings sj E Lk but not in 
L~. These strings occur with probability P(s j )  each 
and so the transition probability is:P[s ~ k] = 
~, jeL , , , j¢L , , , j eLk  ( 1 / n ) P ( s i )  • 

Summing over all strings sj E ( Lt N Lk ) \ L, (set dif- 
ference) it is easy to see that  sj • ( Lt N Lk ) \ Ls ¢~ sj • 
(L, N nk) \ (L, n Ls). Rewriting, we have P[s ---* k] = 
~ , j e (L ,nLk) \ (L ,nL . ) (1 /n )P(s j ) .  Now we can compute 
the transition probabilities between any two states. 
Thus the self-transition probability can be given as, 
P[s --, s] = 1-~-'~ k is a neighboring state o f ,  P[s ---, k]. 
Example. 
Consider the 3-parameter natural language system de- 
scribed by Gibson and Wexler (1994), designed to cover 
basic word orders (X-bar structures) plus the verb- 
second phenomena of Germanic languages, lts binary 
parameters are: (1) Spec(ifier) initial (0) or final (1); 
(2) Compl(ement) initial (0) or final (1); and Verb Sec- 
ond (V2) does not exist (0) or does exist ( l) .  Possi- 
ble "words" in this language include S(ubject),  V(erb), 
O(bject),  D(irect) O(bject),  Adv(erb) phrase, and so 
forth. Given these alternatives, Gibson and Wexler 
(1994) show that  there are 12 possible surface strings 
for each ( - V 2 )  grammar and 18 possible surface strings 
for each (+V2) grammar, restricted to unembedded or 
"degree-0" examples for reasons of psychological plau- 
sibility (see Gibson and Wexler for discussion). For in- 
stance, the parameter  setting [0 1 0]= Specifier initial, 
Complement final, and - V 2 ,  works out to the possi- 
ble basic English surface phrase order of Subject -Verb-  
Object (SVO). 

As in figure 1 below, suppose the SVO ("English", 
setting # 5 =[0  1 0]) is the target grammar. The figure's 
shaded rings represent increasing Hamming distances 
from the target. Each labeled circle is a Markov state. 
Surrounding the bulls-eye target are the 3 other param- 
eter arrays that  differ from [0 1 0] by one binary digit: 
e.g., [0, 0, 0], or Spec-first, Comp-first, - V 2 ,  basic order 
SOV or "Japanese". 
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Figure 1: The 8 parameter settings in the GW example, shown as a Markov structure, with transition probabilities 
omitted. Directed arrows between circles (states) represent possible nonzero (possible learner) transitions. The target 
grammar (in this case, number 5, setting [0 1 0]), lies at dead center. Around it are the three settings that differ 
from the target by exactly one binary digit; surrounding those are the 3 hypotheses two binary digits away from the 
target; the third ring out contains the single hypothesis that differs from the target by 3 binary digits. 
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Plainly there are exactly 2 absorbing states in this 
Markov chain. One is the target grammar (by defini- 
tion); the other is state 2. State 4 is also a sink that  
leads only to state 4 or state 2. GW call these two 
nontarget states local maxima because local gradient 
ascent will converge to these without reaching the de- 
sired target. Hence this system is not learnable. More 
importantly though, in addition to these local maxima, 
we show (see below) that  there are other states (not 
detected in GW or described by Clark) from which the 
learner will never reach the target with (high) positive 
probability. Example: we show that  if the learner starts 
at hypothesis VOS-V2 ,  then with probability 0.33 in 
the limit, the learner will never converge to the SVO 
target. Crucially, we must use set differences to build 
the Markov figure straightforwardly, as indicated in the 
next section. In short, while it is possible to reach "En- 
glish"from some source languages like "Japanese," this 
is not possible for other starting points (exactly 4 other 
initial states). 

It is easy to imagine alternatives to the TLA that 
avoid the local maxima problem. As it stands the 
learner only changes a parameter  setting if that  change 
allows the learner to analyze the sentence it could not 
analyze before. If we relax this condition so that  under 
unanalyzability the learner picks a random parameter 
to change, then the problem with local maxima disap- 
pears, because there can be only 1 Absorbing State, the 
target grammar. All other states have exit arcs. Thus, 
by our main theorem, such a system is learnable. We 
discuss other alternatives below. 

C O N V E R G E N C E  T I M E S  F O R  T H E  
M A R K O V  C H A I N  M O D E L  

Perhaps the most significant advantage of the Markov 
chain formulation is that  one can calculate the number 
of examples needed to acquire a language. Recall it 
is not enough to demonstrate convergence in the limit; 
learning must also be feasible. This is particularly true 
in the case of finite parameter spaces where convergence 
might not be as much of a problem as feasibility. Fortu- 
nately, given the transition matr ix of a Markov chain, 
the problem of how long it takes to converge has been 
well studied. 

S O M E  T R A N S I T I O N  M A T R I C E S  A N D  
T H E I R  C O N V E R G E N C E  C U R V E S  

Consider the example in the previous section. The tar- 
get grammar is S V O - V 2  (grammar ~5  in GW). For 
simplicity, assume a uniform distribution on L5. Then 
the probability of a particular string sj in L5 is 1/12 be- 
cause there are 12 (degree-0) strings in L~. We directly 
compute the transition matrix (0 entries elsewhere): 

L1 
L2 
L3 
L4 
L5 
L6 
L7 
Ls 

L1 
J. 
2 

L2 L3 L4 L5 L6 L7 Ls 
± £ 
6 3 

3_ Z ! 
4 ~ 6 ! 

12 12 
1 
1_ 5 

2_ 1__ 

12 36 9 

States 2 and 5 are absorbing; thus this chain contains 
local maxima. Also, state 4 exits only to either itself 
or to state 2, hence is also a local maximum. If T is 
the transition probability matrix of a chain, then the 
corresponding i, j element of T m is the probability that  
the learner moves from state i to state j in m steps. 
For learnability to hold irrespective starting state, the 
probability of reaching state 5 should approach 1 as m 
goes to infinity, i.e., column 5 of T m should contain all 
l 's, and O's elsewhere. Direct computation shows this 
to be false: 

L1 
L2 
L3 
L4 
Ls 
L6 
L7 
Ls 

L1 L2 L3 L4 L5 L6 L7 Ls 
! 
3 
1 
1 
3 
1 

We see that  if the learner starts out in states 2 or 4, 
it will certainly end up in state 2 in the limit. These 
two states correspond to local maxima grammars in the 
GW framework. We also see that  if the learner starts 
in states 5 through 8, it will certainly converge in the 
limit to the target grammar. 

States 1 and 3 are much more interesting, and con- 
stitute new results about this parameterization. If the 
learner starts in either of these states, it reaches the 
target grammar with probability 2/3 and state 2 with 
probability 1/3. Thus, local maxima are not the only 
problem for parameter  space learnability. To our knowl- 
edge, GW and other researchers have focused exclu- 
sively on local maxima. However, while it is true that 
states 2 and 4 will, with probability l, not converge to 
the target grammar, it is also true that  states l and 
3 will not converge to the target, with probability 1/3. 
Thus, the number of "bad" initial hypotheses is signif- 
icantly larger than realized generally (in fact, 12 out of 
56 of the possible source-target grammar pairs in the 3- 
parameter system). This difference is again due to the 
new probabilistic framework introduced in the current 
paper. 
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Figure 2 shows a plot of the quantity p(m) = 
min{pi(rn)} as a function of m, the number of exam- 
ples. Here Pi denotes the probabili ty of being in state 1 
at the end of m examples in the case where the learner 
started in state i. Naturally we want 

lim p i ( m ) =  1 

and for this example this is indeed the case. The next 
figure shows a plot of the following quantity as a func- 
tion of m, the number of examples. 

p(m) = min{pi(m)} 

The quantity p(m) is easy to interpret. Thus p(m) = 
0.95 rneans that  for every initial state of the learner 
the probability that  it is in the target  state after m 
examples is at least 0.95. Further there is one initial 
state (the worst initial s tate with respect to the target,  
which in our example is Ls) for which this probabili ty 
is exactly 0.95. We find on looking at the curve that  
the learner converges with high probabili ty within 100 
to 200 (degree-0) example sentences, a psychologically 
plausible number. 

We can now compare the convergence time of TLA to 
other algorithms. Perhaps the simplest is random walk: 
s tar t  the learner at a random point in the 3-parameter  
space, and then, if an input sentence cannot be ana- 
lyzed, move 1-bit randomly from state to state. Note 
that  this regime cannot suffer from the local maxima 
problem, since there is always some finite probabili ty of 
exiting a non-target state. 

Computing the convergence curves for a random walk 
algorithm (RWA) on the 8 state space, we find that  the 
convergence times are actually faster than for the TLA; 
see figure 2. Since the RWA is also superior in that  it 
does not suffer from the same local maxima problem 
as TLA, the conceptual support  for the TLA is by no 
means clear. Of course, it may be that  the TLA has 
empirical support ,  in the sense of independent evidence 
that children do use this procedure (given by the pat-  
tern of their errors, etc.), but this evidence is lacking, 
as far as we know. 

D I S T R I B U T I O N A L  A S S U M P T I O N S :  
P A R T  I 

In the earlier section we assumed that  the data  was uni- 
formly distributed. We computed the transition matr ix  
for a particular target  language and showed that  con- 
vergence times were of the order of 100-200 samples. In 
this section we show that  the convergence times depend 
crucially upon the distribution. In particular we can 
choose a distribution which will make the convergence 
time as large as we want. Thus the distribution-free 
convergence time for the 3-parameter  system is infinite. 

As before, we consider the situation where the target  
language is L1. There are no local maxima problems 
for this choice. We begin by letting the distribution be 

parametrized by the variables a, b, c, d where 

a = P (A  = {Adv(erb)Phrase V S}) 
b = P ( B  = {Adv V O S, Adv Aux V S}) 
c = P ( C = { A d v V  O1 O2S ,  A d v A u x V O S ,  

Adv Aux V O1 0 2  S}) 
d = P ( D = { V S } )  

Thus each of the sets A, B,  C and D contain different 
degree-O sentences of L1. Clearly the probability of the 
set L, \ { A U B U C U D }  is 1 - ( a + b + c + d ) .  The elements 
of each defined subset of La are equally likely with re- 
spect to each other. Setting positive values for a, b, c, d 
such that  a + b + c + d < 1 now defines a unique prob- 
ability for each degree(O) sentence in L1. For example, 
the probabili ty of A d v V O S  is b/2, the probability of 
A d v A u x V O S  is c/3, that  of V O S  is ( 1 - ( a + b + c + d ) ) / 6  
and so on; see figure 3. We can now obtain the tran- 
sition matr ix  corresponding to this distribution. If we 
compare this matr ix  with that  obtained with a uniform 
distribution on the sentences of La in the earlier section. 
This matr ix  has non-zero elements (transition proba- 
bilities) exactly where the earlier matrix had non-zero 
elements. However, the value of each transition prob- 
ability now depends upon a,b, c, and d. In particular 
if we choose a = 1/12, b = 2/12, c = 3/12, d = 1/12 
(this is equivalent to assuming a uniform distribution) 
we obtain the appropriate  transition matrix as before. 
Looking more closely at the general transition matrix, 
we see that  the transition probabili ty from state 2 to 
state 1 is ( 1 -  ( a + b + c ) ) / 3 .  Clearly if we make a 
arbitrarily close to 1, then this transition probabili ty 
is arbitrarily close to 0 so that  the number of samples 
needed to converge can be made arbitrarily large. Thus 
choosing large values for a and small values for b will 
result in large convergence times. 

This means that  the sample complexity cannot be 
bounded in a distribution-free sense, because by choos- 
ing a highly unfavorable distribution the sample com- 
plexity can be made as high as possible. For example, 
we now give the convergence curves calculated for dif- 
ferent choices of a, b,c, d. We see that  for a uniform 
distribution the convergence occurs within 200 sam- 
ples. By choosing a distribution with a = 0.9999 and 
b = c = d = 0.000001, the convergence time can be 
pushed up to as much as 50 million samples. (Of course, 
this distribution is presumably not psychologically re- 
alistic.) For a = 0.99, b = c = d = 0.0001, the sample 
complexity is on the order of 100,000 positive examples. 
Remark. The preceding calculation provides a worst- 
case convergence time. We can also calculate average 
convergence times using standard results from Markov 
chain theory (see Isaacson and Madsen, 1976), as in 
table 2. These support  our previous results. 

There are also well-known convergence theorems de- 
rived from a consideration of the eigenvalues of the 
transition matrix. We state without proof  a conver- 
gence result for transition matrices stated in terms of 
its eigenvalues. 
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Table 1: Complete list of problem states, i.e., all combinations of starting grammar and target grammar which result 
in non-learnability of the target. The items marked with an asterisk are those listed in the original paper by Gibson 
and Wexler (1994). 

Initial Grammar Target Grammar 

(svo-v2) 
(svo+v2)* 
(soy-v2) 

(SOV+V2)* 
(VOS-V2) 

(VOS+V2)* 
(OVS-V2) 

(ovs+v2)* 
(vos-v2) 

(VOS+V2)* 
(OVS-V2) 

(OVS+V2)* 

(OVS-V2) 
(ovs-v2) 
(ovs-v2) 
(ovs-v2) 
(svo-v2) 
(svo-v2) 
(svo-v2) 
(svo-v2) 
(sov-v2) 
(soy-v2) 
(soy-v2) 
(sov-v2) 

State of Initial Grammar 
(Markov Structure) 

Not Sink 

Probability of Not 
Converging to Target 

Not Sink 
Sink 

0.5 
Sink 1.0 

0.15 

Not Sink 
Sink 

Not Sink 
Not Sink 
Not Sink 

1.0 

Not Sink 
Sink 

0.33 
1.0 

0.33 
1.0 

0.33 
Sink 1.0 

0.08 
1.0 

~ f  f ............... 

~ m  

~o 

;°1 
-@ 

6 16o 260 360 460 
Number of examples (m} 

Figure 2: Convergence as a function of number of examples. The probability of converging to the target state after 
m examples is plotted against m. The data from the target is assumed to be distributed uniformly over degree-0 
sentences. The solid line represents TLA convergence times and the dotted line is a random walk learning algorithm 
(RWA) which actually converges fasler than the TLA in this case. 
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Figure 3: Rates of convergence for TLA with L1 as the target language for different distributions. The probability 
of converging to the target after m samples is plotted against log(m). The three curves show how unfavorable 
distributions can increase convergence times. The dashed nine assumes uniform distribution and is the same curve 
as plotted in figure 2. 

Table 2: Mean and s t andard  deviation convergence times to target  5 (English) given different distributions over 
the target  language, and a uniform distr ibution over initial states.  The  first distr ibution is uniform over the target  
language; the other distributions 

Learning Mean abs. 
scenario time 

TEA (uniform) 34.8 
TLA (a = 0.99) 45000 

TLA (a = 0.9999) 4.5 × 106 
RW 9.6 

alter the value of  a as discussed in the main text. 
Std. Dev. 

of abs. t ime 
22.3 

33000 
3.3 × l06 

10.1 

1 7 7  



T h e o r e m  2 Let T be an n x n transition matrix with 
n linearly independent  left eigenvectors x l  . . . .  xn  cor- 
responding to eigenvalues .~l , . . . , .~n. Let x0 (an n- 
dimensional  vector) represent the starting probability of  
being in each state of  the chain and r be the limiting 
probability o f  being in each state. Then after k transi- 
tions, the probability of  being in each state x0T k can be 
described by 

n 

I1 x0T k-~ I1=11 ~ mfx0y~x, I1~< max I~,lk ~ II x0y,x, II 
2 < i < n  

i = 1  - - i = 2  

where the Yi ' s  are the right eigenvectors o f T .  

This theorem bounds the convergence rate to the 
limiting distribution 7r (in cases where there is only 
one absorption state, 7r will have a 1 corresponding to 
that state and 0 everywhere else). Using this result 
we bound the rates of convergence (in terms of num- 
ber k of samples). It should be plain that  these results 
could be used to establish standard errors and confi- 
dence bounds on convergence times in the usual way, 
another advantage of our new approach; see table 3. 

D I S T R I B U T I O N A L  A S S U M P T I O N S ,  
P A R T  I I  
The Markov model also allows us to easily determine 
the effect of distributional changes in the input. This 
is important  for either computer or child acquisition 
studies, since we can use corpus distributions to com- 
pute convergence times in advance. For instance, it 
can be easily shown that  convergence times depend cru- 
cially upon the distribution chosen (so in particular the 
TLA learning model does not follow any distribution- 
free PAC results). Specifically, we can choose a distribu- 
tion that  will make the convergence time as large as we 
want. For example, in the situation where the target 
language is L1, we can increase the convergence time 
arbitrarily by increasing the probability of the string 
{Adv(verb) V S}. By choosing a more unfavorable dis- 
tribution the convergence time can be pushed up to as 
much as 50 million samples. While not surprising in it- 
self, the specificity of the model allows us to be precise 
about the required sample size. 

C H I L D E S  D I S T R I B U T I O N S  
It is of interest to examine the fidelity of the model us- 
ing real language distributions, namely, the CHILDES 
database. We have carried out preliminary direct ex- 
periments using the CHILDES caretaker English input 
to "Nina" and German input to "Katrin"; these consist 
of 43,612 and 632 sentences each, respectively. We note, 
following well-known results by psycholinguists, that  
both corpuses contain a much higher percentage of aux- 
inversion and wh-questions than "ordinary" text (e.g., 
the LOB): 25,890 questions, and 11,775 wh-questions; 
201 and 99 in the German corpus; but only 2,506 ques- 
tions or 3.7% out of 53,495 LOB sentences. 

To test convergence, an implemented system using a 
newer version of deMarcken's partial parser (see deMar- 
cken, 1990) analyzed each degree-0 or degree-1 sentence 
as falling into one of the input patterns SVO, S Aux V, 
etc., as appropriate for the target language. Sentences 
not parsable into these patterns were discarded (pre- 
sumably "too complex" in some sense following a tradi- 
tion established by many other researchers; see Wexler 
and Culicover (1980) for details). Some examples of 
caretaker inputs follow: 

this is a book ? what do you see in the book ? 
how many rabbits ? 
what is the rabbit doing ? ( . . . )  
is he hopping ? oh . and what is he playing with ? 
red mir doch nicht alles n ach !  
ja , die schw~tzen auch immer alles nach ( . . . )  

When run through the TLA, we discover that con- 
vergence falls roughly along the TLA convergence time 
displayed in figure 1-roughly 100 examples to asymp- 
tote. Thus, the feasibility of the basic model is con- 
firmed by actual caretaker input, at least in this simple 
case, for both English and German. We are contin- 
uing to explore this model with other languages and 
distributional assumptions. However, there is one very 
important  new complication that  must be taken into 
account: we have found that one must (obviously) add 
patterns to cover the predominance of auxiliary inver- 
sions and wh-questions. However, that  largely begs the 
question of whether the language is verb-second or not. 
Thus, as far as we can tell, we have not yet arrived at 
a satisfactory parameter-setting account for V2 acqui- 
sition. 

V A R I A N T S  O F  T H E  L E A R N I N G  
M O D E L  A N D  E X T E N S I O N S  

The Markov formulation allows one to more easily ex- 
plore algorithm variants. Besides the TLA, we consider 
the possible three simple learning algorithm regimes by 
dropping either or both of the Single Value and Greed- 
iness constraints. The key result is that ahnost any 
other regime works faster than local gradient ascent and 
avoids problems with local maxima. See figure 4 for a 
representative result. Thus, most interestingly, param- 
eterized language learning appears particularly robust 
under algorithmic changes. 

E X T E N S I O N S ,  D I A C H R O N I C  
C H A N G E  A N D  C O N C L U S I O N S  

We remark here that  the "batch" phonological param- 
eter learning system of Dresher and Kaye (1990) is sus- 
ceptible to a more direct PAC-type analysis, since their 
system sets parameters in an "off-line" mode. We state 
without proof some results that can be given in such 
c a s e s .  
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Learning scenario 
TLA (uniform) 
TLA(a = 0.99) 

TLA(a = 0.9999) 
RW 

Table 3: Convergence rates derived from eigenvalue calculations. 
Rate of Convergence 

0(0.94 ~) 
o ( ( 1 -  lo-~) ~) 
o((1 - 10-6) k) 

o(0.89 k) 

q 

~, d 

d 

,/ / 
i// / '  

/ / / /  
L.~, 

2'0 4'o 6'0 s'o 6o 
Number of samples 

Figure 4: Convergence rates for different learning algorithms when L1 is the target language. The curve with the 
slowest rate (large dashes) represents the TLA, the one with the fastest rate (small dashes) is the Random Walk 
(RWA) with no greediness or single value constraints. Random walks with exactly one of the greediness and single 
value constraints have performances in between. 
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T h e o r e m  3 If  the learner draws more than M = 
1 In(l /b)  samples, then it will identify the tar- ln(l/(1-bt)) 

get with confidence greater than 1 - 6. ( Here bt = 
P(Lt \ Uj~tLj)). 

Finally, the Markov model also points to an intrigu- 
ing new model for syntactic change. One simply has to 
introduce two or more target languages that  emit posi- 
tive example strings with (probably different) frequen- 
cies: each corresponding to difference language sources. 
If the model is run as before, then there can be a large 
probability for a learner to converge to a state different 
from the highest frequency emitting target state: that 
is, the learner can acquire a different parameter setting, 
for example, a - V 2  setting, even in a predominantly 
+V2 environment. This is of course one of the histor- 
ical changes that  occurred in the development of En- 
glish. Space does not permit us to explore all the con- 
sequences of this new Markov model; we remark here 
that once again we can compute convergence times and 
stability under different distributions of target frequen- 
cies, combining it with the usual dynamical models of 
genotype fixation. In this case, the interesting result is 
that the TLA actually boosts diachronic change by or- 
ders of magnitude, since as observed earlier, it can per- 
mit the learner to arrive at a different convergent state 
even when there is just one target language emitter. In 
contrast, the local maxima targets are stable, and never 
undergo change. Whether this powerful "boost" effect 
plays a role in diachronic change remains a topic for fu- 
ture investigation. As far as we know, the possibility for 
formally modeling the kind of saltation indicated by the 
Markov model has not been noted previously and has 
only been vaguely stated by authors such as Lightfoot 
(1990). 

In conclusion, by introducing a formal mathematical 
model for language acquisition, we can provide rigor- 
ous results on parameter learning, algorithmic varia- 
tion, sample complexity, and diachronic syntax change. 
These results are of interest for corpus-based acquisition 
and investigations of child acquisition, as well as point- 
ing the way to a more rigorous bridge between modern 
computational learning theory and computational lin- 
guistics. 
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