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What Explains the Tower of Babel?   
 

In this talk, I would like to arrive at a better explanation of why human language looks the way it 
does by drawing on the key insights from the language of biology.  In particular, I would like to 
argue that understanding of human language and its variation – the “Tower of Babel” – can only 
be accounted for explicitly incorporating the underlying ‘traits’ of language into the Darwinian 
materialist view of individual variation and speciation, an epistemological stance that, to my 
mind, has not yet been fully appreciated or embraced.  
 
So the idea I would like to talk about this: We must make the study of language more like 
biology, by giving up on two central idealizations that have held sway in modern linguistic 
theory over the past 50 years. Rather, we must attend to Darwin’s notion that variation is of the 
essence, and the heart of speciation – and similarly different languages – is the conversion of the 
standing variation among individuals within an interbreeding group into variation between 
groups in space and time. Such a theory of evolution necessarily takes the variation between 
individuals as of the essence. Can we do the same for language?  
 
Indeed, among the many puzzling questions about language, two are salient: First, why are there 
any languages at all, evidently unique to the human lineage, what evolutionary biologists call an 
“autapomorphy”?  Second, why are there so many languages, apparently clumped into groups 
like biological species? These are in fact the basic questions of origin and variation that so 
occupied Darwin and other evolutionary thinkers and comprise modern biology’s explanatory 
core: why do we observe this particular array of living forms in the world and not others?  In this 
talk I will attempt to answer the second question, why are there so many languages, rather than 
just one: the Tower of Babel. A familiar and easy answer is that there are so many languages for 
the same reason there are so many different kinds of organisms – due to the potential for 
generating ‘endless forms most beautiful’ in the current evo-devo sense, as well as the drive to 
find distinguishable ‘niches’.  Indeed, it is this fact that is most often mentioned in the way that 
languages develop new vocabulary words to distinguish themselves from one another.  As I am 
sure you are aware, philological analysis from the early 1800s to the present day, by uncovering 
rules governing phonological change, historical linguists reconstructed dead protolanguages such 
as Indo-European — an ancestral dialect spoken some 10,000 years ago that diverged into a wide 
variety of modern languages, including Hindi, Russian, Spanish, English and Gaelic. The 
crowning achievement of these early linguists was a family tree of languages that became an 
inspiration for Charles Darwin as he pondered biological evolution. [SLIDE] 
 
However, this observation usually devolves into simply the taxonomic observation of distinct 
language families.  It does not explain why there are certain groups and not others? Why do 
languages clump into groups?   That is because, I believe, there is another, far, far deeper reason 
for the Tower of Babel. Not only do distinct languages wind up using different words with 
distinct sound patterns, e.g., love in English, ama in Portuguese; they differ along deeper 
dimensions, just a there is a complex mapping from genotype to phenotype that results in the 
morphological ‘traits’ that a taxonomist uses. To take an example literally closer to home, we 
know that our colleagues from Brasil would say ele me viu for “he saw me” rather than ele viu-
me. (The first, Brasilian variant we will call “Classical Portuguese”, and the second, “European, 
Modern Portuguese.”  But Why?  This divergence is, in fact, part of what I will try to now 
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explain as which I will now show is really almost like a genomic trait, rather than a word-
structure one.   
 
This important aspect of explanation – why we see certain languages and not others – cannot be 
captured if hold to the standard idealizations of modern linguistic theory. Consider for example a 
well-known statement of these idealizations, from Chomsky, 1965: 
 

“Linguistic theory is concerned primarily with an ideal speaker-listener, in a completely 
homogenous speech-community, who knows and acquires its language perfectly…no 
cogent reason for modifying [this position] has been offered.”    

 
On the standard modern linguistic view then, not only is language communication perfect – no 
one ever misunderstands you, but also language learning is instantaneous and perfect.  
Impossible, of course, these idealizations are false, and linguists know they are false. They are 
meant to serve as Galilean idealizations: that one can imagine language understanding and 
learning as if it were perfect, and this does no harm to our construction of the ‘true’ theories of 
human language.  
 
A moment’s reflection ought to suggest that the idealization regarding perfect language learning 
leads to an immediate paradox, because it assumes that language is acquired from a single source 
(the ‘homogeneous community’ mentioned in the quote), and always works perfectly. But if 
children in the current generation always perfectly learned the language of their caretakers, and 
then, on growing up, as caretakers they in turn passed on their language to their own children, 
and so on, generation after generation, then languages would never change.  Yet we know that 
they do. Here’s an example. Why?  
 
A common answer, true as far as it goes, is that by analogy with DNA replication, there must be 
some slight chance of mislearning the language of one’s parents or peers. There is, however, a 
crucial distinction to be made with the Darwinian formulation in biology, and that is in the mode 
of inheritance -- the ‘transmission’ of information from one generation to the next.  In the 
modern Darwinian synthesis this role is played by Mendelism.  In the case of language, the 
transmission of information from parents and their surrounding social milieu to offspring is 
carried out by language acquisition.  We do not need to say anything more at the moment about 
this than that for language acquisition the transition mechanism is simply that – any mechanism, 
i.e., any computable function whatsoever that accesses data from the environment (eg, sentences 
from parents or peers, suitably generalized, so we can think of this just as some datastream s1, s2, 
…) after some (finite) time, maps them onto some ‘target’ language (eg, Bangla, German, 
Japanese, French, ...).   
 
Suppose then that we take the possibility of ‘copying error’ as in DNA – some probability of 
‘mislearning’ a parent’s language – to be source of divergence of languages over time. (This is 
the viewpoint expressed since the time of Darwin in the familiar analyses of how cognate words 
such as water, wassen, vato might ‘diverge’ over time, with recent work constructing 
phylogenetic trees of common ancestry, calculating divergence times, rates, and the like.)  
Suppose then that we set up the simplest model possible of such ‘language transmission’ along 
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the following lines analogous to the biological situation, which are also deliberately aimed to be 
as general as possible (aside from one constraint that we shall come to in a moment): 
 

• Assume there is some possible (finite or infinite) universe of possible languages; let us 
call this the state space of possible languages L. (So L={German, Dutch, Portuguese 
Bangla, Japanese, …} 

 
• We further posit some (arbitrarily large) population of language speakers (‘agents’) at 

generation 1.  Corresponding to the biological case, the agents might differ in the ‘gene 
variants’ (alleles), i.e., languages that they speak (or words they use for ‘water’).  We can 
assume some initial probability distribution of languages (traits) over agents.  In 
particular, again following the simplest genomic situation, let’s say that there is one 
‘gene’ with 2 allele variations, language 1 (German say) and language 2 (Chinese).   
These are distributed in some frequency within the population, e.g., 80% of the agents 
might speak German, and 20% Chinese, etc. Call the language spoken by a particular 
agent in generation 1 l1 (for the moment not distinguishing among languages). 

 
• Each Agent transmits its language (trait) to a single language learner, via the learning 

algorithm A, by ‘drawing’ n example sentences in i.i.d (i independent draws) fashion 
given some probability distribution to create the linguistic experience D for the learner. A 
maps data (experience) to a selected language.  Note that A can be any learning scheme: 
Bayesian estimation, some threshold  

  
• The learner applies its learning algorithm A to the input data it receives, i.e., A(D), 

yielding the mature language it ‘learns’, or acquires, l2.  Then, this mature learner in turn 
becomes an agent to pass on l2 in the next generation. To capture the notion that the 
transmission of information might not be entirely perfect (by analogy with the biological 
case), we define a transition matrix for any two languages l and k such that T[l,k], gives 
the probability that the learner exposed to the data from language l will learn language k, 
i.e.,  

 T [l,k] = prob[l→ k] = prob[A(D) = k | D generated by Pl ]  
 

Thus for example T[l,l] is the probability of correctly acquiring the parent agent’s 
language, while if l≠k (over all other entries in the row), then the learner incorrectly 
acquires its parent’s language.  (The matrix T is stochastic: for a given row l, the column 
entries k must sum to 1.) So this is how we have modeled the notion of information mis-
copying. 
 

• This gives rise to an iterated trajectory of languages over generational timesteps: l1→ 
l2→ l3…  Let us call this model Iterated Learning (IL). 

 
• The IL model is very clearly now a dynamical system: we have described the state of a 

system at the next generation (time) i+1, a distribution of languages, as determined by an 
update equation given by T, the distribution of agents at the current generation i, the 
distribution of sentences each agent speaks, plus the update mapping A(D).  The initial 
distribution of speakers of language l at generation t, P(t)(l), will evolve as follows: 
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We can picture this model as follows: [Slide] 
 
Now let’s see if this model, perhaps the simplest one imaginable that includes the possibility of 
slight mislearning, or information transmission/copying errors, as well as a simple notion of a 
non-homogeneous language community (two or more languages being spoken), actually works 
and makes sense. Does it do the job of incorporating Darwinian evolution properly, showing how 
languages might invariably ‘clump’ into distinct ‘species’ given what we know about language 
change and language stability?  Perhaps surprisingly, the short answer is that it does not and 
cannot.   It is completely dynamically insufficient, in that it can neither account for language 
stability, nor can it account for the empirically attested possibility of rapid language change, or 
the clustering of languages into groups.   Let us see why, and see what part of Darwinism we 
have unfortunately missed, so we can modify the model and arrive at a better solution. By the 
end, I will hope to build enough of a model to explain part of the change from classical, 
“European” Portuguese to Brazilian Portuguese. 
 
An example will illustrate the general result.  Returning to our idealized world of just two 
languages (different alleles), say German and English assume some initial proportion of speakers 
of each language, say, 90% German speakers and 90% English speakers; call this initial 
percentage α1 and (1–α1).  What do the entries of the corresponding 2 x 2 transition T matrix 
look like? The entry T(1,1) is the probability that a learner will receive examples from an agent 
speaking language 1, and correctly acquire language 1, e.g., T(1,1) gives the probability of 
learning German after being exposed to an German-speaking agent, call this p. T(1,2) is the 
probability that a learner will hear the agent speaking language 1,  German but acquire language 
2 instead (English), so T(1,2)= 1–p = 1–T(1,1) is the probability of mislearning German; call this 
probability epsilon (which we assume to be small).  Thus German is effectively learnable with 
some small error. For simplicity, assume that this mislearning error probability is also the same 
for English learners exposed to the data from English speaking-agents, ε. Thus, T(2,2) and T(2,1) 
are the dual cases for the transition probability entries for learners successfully acquiring hearing 
English and mislearning German instead, q and ε, respectively.  
 
Given this transition matrix T, when we iterate the update equation for the distribution of l1 in the 
next generation, over and over again until we reach a fixed point (equilibrium condition) α* 
where the percentage of l1 speakers no longer changes, this yields the following equation: 

 α* =
T (2,1)

T (2,1) + (1− T (1,1))
=

ε
ε + ε

=
1
2

 

 
I.e., a 50-50% mix of both languages! This holds no matter what the initial distribution of 
language speakers is.  So, if there is even an infinitesimally small chance of mislearning either of 
the two languages, then from any initial mix, the system will converge to a 50-50 mix. Although 
each language is effectively learnable (with probability 1–ε), a homogeneous community cannot 
be maintained and degenerates to a mixture of language types over time. The only situation in 
which the single-agent, iterated learning model is stable is if learning is absolutely perfect, with 
zero error tolerance – not jettisoning the ‘ideal speaker-hearer’ idealization.  
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Although each learner is immersed in a potentially heterogeneous population, each learns only 
from a single individual, never reflecting the population variation. Different learners, of course, 
learn from potentially different individuals.  
 
The case of Portuguese. 
The main moral underscores the individual/population difference, and demonstrates the potential 
subtlelty of language change: we show that simply because an individual child will, with high 
probability, choose a particular grammar (European Portuguese) does not mean that all other 
grammars (e.g., Classical Portuguese) will be eliminated; rather, contrary to surface intuition, 
that is a property of the dynamical system and the population ensemble itself. 
 
In this paper, we focus on a particular change in phonological and syntactic Portuguese recently 
discussed by Galves & Galves (1995). Roughly, over a period of 200 years, starting from 1800, 
‘‘classical’’ Portuguese (CP) underwent a change in clitic placement. From the 16th century or 
before until the beginning of the 19th century, both proclitics and enclitics were possible in root 
declarative sentences (nonquantified subjects), as given by Galves & Galves (G&G) in examples 
(1) and (2), and in quantified subjects (3), which we will refer to henceforth via their reference 
numbers: 
 
(1) Paulo a ama. (proclitic) Paulo her loves 
‘Paulo loves her.’ 
(2) Paulo ama-a (enclitic) Paulo loves-her 
‘Paulo loves her.’ 
(3) Quem a ama? (proclitic) Who her loves? 
‘Who loves her?’ 
 
“During the 19th century a change affecting the syntax of clitic-placement occurred in the 
language spoken in Portugal.As a result, sentences like (1) became agrammatical and (2) 
remained as the only option for root affirmative sentences with non-quantified subjects. This 
change, however, did not concern sentences like (3) with quantified or wh-subjects in which 
proclisis was, and continues to be, the only option.” Galves & Galves, Tycho Brae project. 
 
To each sentence we will assign (a) a morphological word sequence; (b) a stress contour; and (c) 
a syntactic structure. For example, again following G&G’s analysis, sentence type (2) will 
remain only in CP, while the two sentences (2)–(3) above will have different stress patterns for 
CP and EP. We omit a detailed description of the stress assignment and syntactic properties, as 
they are not necessary for our analysis. All we need to know is that G&G assume that the stress 
contours corresponding to sentence types (1), (2), and (3), which we denote simply as c1 c2 , c3, 
follow a Markov chain description and, more importantly, govern the probability with which 
sentences are produced. (We are, of course, aware that this assumption of G&G may also be 
questioned; one might substitute any other more plausible relation between stress and sentence 
types — if any; this assumption is simply designed as a bridge to get the child from a presumably 
observable surface.) Thus, if two sentences have the same stress contour, then they will be 
produced with the same probability (given by the probability of the stress sequence according to 
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Markov production rules). In short, for the purpose of this paper, it is sufficient to assume that 
there are two and only two grammars (in accordance with Galves’s assumptions): GCP, denoting 
the grammar of Classical Portuguese (earlier) and GEP, denoting the grammar of European 
Portuguese. Furthermore, the only data that is relevant (ignoring other aspects of the grammar) is 
as follows: 
 
Classical Portuguese (CP-1) c1: produced with probability p; (CP-2) c2 produced with 
probability 1–2p; and (CP-3) c3 produced with probability p. 
 
European Portuguese (EP-1) c1: not produced; (2) (EP-2) c2 produced with probability 1–q; and 
(EP-3) c3 produced with probability q. 
 
Any (historically changing) population will now by assumption contain a mix of speakers of 
Classical and European Portuguese. The Classical Portuguese speakers produce the sentence 
types shown above with the probabilities (parameterized by p). The European Portuguese 
speakers produce the sentence types shown above with the probabilities (parameterized by q). 
 
Thus we have defined (1) the class of grammars (1) G={GEP, GCP}; (2) Probabilities with which 
speakers of GEP and GCP produce sentences (parameterized by p and q). We therefore can derive 
the evolutionary consequences on the population for a variety of learning algorithms. We first 
consider a probabilistic, Maximum Likelihood Method: to choose between CP and EP given 
some input sentences (conditioned on stress patterns), pick the language (grammar) that 
maximizes the probability of generating the available data (surface forms). This is probably the 
simplest probabilistic learning algorithm and leads to the following: 
 
Learning Algorithm 1 
1. Draw n examples (sentences).  
2. Compute likelihoods, i.e., P(Sn | GCP) and P(Sn|G) 
3. Use the Maximum Likelihood Method to choose between the two grammars. 
 
As discussed earlier, to calculate the historical dynamics we must be able to analyze the behavior 
of the learning algorithm, i.e., characterize eq. 1. For the analysis of the algorithm, we assume 
that sentences are drawn in i.i.d. fashion according to a distribution dictated by their stress 
contours as indicated in the earlier section. 
 
First, consider the form of the likelihoods. Let the example sentences be Sn={s1, s2, …, sn}. Due 
to the i.i.d. assumption, P(Sn | GCP) is given by Πi=1 to n P(sn | GCP).  Suppose that the sample 
consists of a draws of c1, b draws of c3, and n–a–b draws of c2.  Then the following is clear: 

P(Sn |GCP ) = pa (1− 2p)n−a−b pb  
P(Sn |GEP ) = (0)

a (1− q)n−a−b qb  
 
Consequently, the individual child, following the Maximum Likelihood Method will choose the 
grammar EP (GEP) only if (1) no instances of c1 occur in its sample; and (2) c2 and c3 occur in 
numbers so that qb  (1–q)n–b > (1–2p)(n–b) pbჽZ.   There are 3 cases to consider. 
 
Case 1.  p < q < 2p.  Decision Rule: For this case, it is possible to show that the child (following 
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the Maximum Likelihood Rule) always chooses GEP if no instances of c1 occur. This is simply 
because 1–q> 1–2p; and q>p. 
Equation 1 and Population Update: Suppose that the proportion of speakers of GCP in the ith 
generation is αi Then the probability of drawing c1 is given by αip. Consequently, the probability 
of drawing a set of n examples without a single draw of c1 is (1 –α1 p)n. This is of course the 
probability with which the individual child chooses the grammar of European Portuguese, GEP 
Thus the update rule has the following form: 

 
Case 2. q < p < 2p Decision Rule: In this case, the Maximum Likelihood Rule reduces to the 
following. Choose GEP if and only if (1) a =0, i.e., no instances of c1 occur; and (2) b < nϒ where  
ϒ = log(1-2p)/log(1-q)/(1-2p) + log(p/q).  For all other data sets, choose GCP. 
 
Equation 1 and Population Update: As usual, let there be αi proportion of the previous 
generation speaking GCP. It can be shown that events (1) and (2) above occur with probability  
Σk=0 to n ϒ n choose k, PkQ(n–k) where P= αip+(1–αi)q, as shown below. 
 

 

Case 3. p <2 p < q. Decision Rule: The MLE reduces to: choose GEP iff (1) a=0; and (2) b >nϒ. 
Otherwise, choose GCP.  The update rule has the following form: 
 

 
System Evolution 
We have shown above how the behavior of the population can be characterized as a dynamical 
system and have derived the update rules for such a system for a Maximum Likelihood learning 
algorithm The dynamical system captures the evolutionary consequences of this particular 
learning algorithm. In this section we describe its evolutionary properties, and see how they 
mesh with observed cognitive (historical) trends. 
 
Three Cases 
Case 1. p < q < 2p 

1. α=0 is a fixed point, i.e., if the initial population consists entirely of European 
Portuguese speakers, it will always remain that way. Furthermore, if np<1, then this 
is a stable fixed point. It is also the only fixed point between 0 and 1. Thus in this 
case a population speaking entirely Classical Portuguese would gradually be 
converted to one speaking entirely European Portuguese. 

2. If np > 1,  then α=0 remains a fixed point but now becomes unstable . For this case, 
an additional fixed point (stable) is now created between 0 and 1. All initial 

α i+1 = 1− (1−α i p)
n

α i+1 = 1−
n
k

⎛
⎝⎜

⎞
⎠⎟k=0

nγ

∑ pkQ(n−k ),  Q =α i (1− 2p)+ (1−α i )(1− q)

                                              P =α i p + (1−α i )q

α i+1 = 1−
n
k

⎛
⎝⎜

⎞
⎠⎟k=nγ

0

∑ pkQ(n − k),  Q =α i (1− 2p)+ (1−α i )(1− q)

                                              P =α i p + (1−α i )q
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population compositions will tend to this particular mix of GCP and GEP speakers. 
Figure 1 shows the fixed (equilibrium) point as a function of n and p. 

Case 2. q < p < 2p    
1. Unlike case 1, the dynamical evolution now depends upon both p and q in addition to 

n. 
2. It is easily seen that α=0 is no longer a fixed (equilibrium) point (unless p=q). 

Consequently, populations, irrespective of their initial composition, will always 
contain some speakers of Classical Portuguese. 

3. It is possible to show that there is exactly one fixed (stable) point and all initial 
populations will tend to this value. Shown in fig. 2 is plot of the fixed point as a 
function of q and p for a fixed value of n. Notice the multiple ridges in the profile 
suggesting sensitivity to the value of q around some critical points. Shown in fig. 3 is 
a plot of the fixed point as a function of p for various choices of n keeping q fixed at 
0.1. 

 
Case 3. q < p < 2p. Like case 2, the dynamical evolution depends upon both p and q in addition 
to n. 2. Again, it is easily seen that α=0 is no longer a fixed point. Therefore, the speakers of 
Classical Portuguese can never be eliminated altogether for p and q in this range. 
 
What are the important conclusions from this analysis? In short, children using the Maximum 
Likelihood Rule will choose GEP over GCP. However, a dynamical systems analysis must be 
carried out to see if that will suffice to ‘‘wipe out’’ Classical Portuguese. Only in case 1 will 
Classical Portuguese be lost completely (provided p ` 1an). In all other cases , there will always 
remain some speakers of Classical Portuguese within the community. In fact, the evolutionary 
properties can be quite subtle.4 Consider the following three example cases. 
 
Example 1 Let p =0.05, q=0.02, and n= 4. In this case, if the parental generation were all 
speaking Classical Portuguese then a simple computation shows that the probability with which 
the child would pick GEP (α=1) European Portuguese, is 0.66. i.e., it is greater than one-half. 
Thus, in spite of the fact that the majority of children choose the grammar of European 
Portuguese, the speakers of Classical Portuguese will never die out completely. In fact, the fixed 
point is 0.11. Roughly 11 percent of the population will continue to speak Classical Portuguese. 
 
Example 2 Let p =0.05,  q= 0.06 and n =8. If this were the case, and the parental generation all 
spoke Classical Portuguese, it turns out that the probability with which the individual child 
would pick GEP would again be 0.66 However, now the speakers of classical Portuguese would 
all be lost and the population would move to its stable, fixed point containing only speakers of 
European Portuguese. 
 
Example 3 If p =0.05, q= 0.06 and n=21 however, it is easily seen that Classical Portuguese 
speakers can never be completely lost. 
 
 
Since a batch algorithm is presumably psychological unreal (due to memory limitations), one 
could substitute, as we have done, a memoryless algorithms, such as local gradient ascent 
(Gibson & Wexler’s ‘‘Triggering Learning Algorithm’’ or TLA, 1994). Due to reasons of space, 
we leave a detailed presentation of the results of this modification to one side, and simply note 
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that one obtains yet a different historical dynamic. It is possible to prove that in this case, the 
population evolves according to the update rule: 
 

 
 

Here  
Here alpha_i and alpha_i+1 are the proportion of the population speaking Classical Portuguese in 
generation i and i+1 respectively. As usual, n is the number of examples drawn. Here, note that 
CP speakers can never be eliminated to less than 1/2 of the population. Consequently, one is able 
to see immediately that the TLA does not have the right evolutionary properties to explain the 
change from Classical to European Portuguese. Second, it is possible to show that there is 
exactly one (stable) fixed point (between 1a2 and 1) to which such a system evolves, for various 
values of n and p. 
 
What is going wrong? 
What is the nature of this trajectory – that is, of this dynamical system?     
Linear 
Markov transition matrix.  
Implications. 
This has the non-homogeneous part. 
What does it lack???  
It lacks learning from multiple individuals.  Social learning. 
It lacks the ‘non-instantaneous’ part 
Maturation time is crucial. 
 
Symmetry breaking creates language species. Ising model: no phase transition in 1D case;  
 
Discuss the SL model, show the graph.  Stable Attractor basins.  Result is to form two ‘species’ 
of language: one German-like (Scandanavian), one English-like.   
Symmetry-breaking in the graph: jumps in attractor basin.  Similarity to Eisen model 
 
New criterion for linguistic theory, drawn from biology:  must also be able to describe the 
correct dynamical trajectories over time.   And the correct divergences of languages into the 
observed ‘species.’ 
 
What is a parameter?  A  
What are the lessons? 
 
 
We note that this shift from the viewpoint of the {\it individual} 
acquisition of a grammar from data generated from a {\it single} 
source to the population view is quite parallel to the fundamental 
epistemological shift that took place with Darwin's introduction of 
population level reasoning in biology at the time of {\it Origin of 

α i+1 = 1−
1
2
(1−α i p)

n



10 
 

Species\/}.  Darwin insisted that in his theory individual variation 
was of the essence: for Darwin, biological evolution operates on two 
variational levels -- variation among the parental generation, and 
variation in the offspring generation.  This is no mere philosophical 
quibble without theoretical or empirical consequences.  Rather, it is 
central.  We argue in this paper that the proper formulation of the 
full population viewpoint requires, as Lewontin 
(1974)\nocite{Lewontin74} notes, that one incorporate variation into 
both parental and offspring generations.\footnote{``$\ldots$ where is 
the revolution that Darwin made?  The answer is that the essential 
nature of the Darwinian revolution was neither the introduction of 
evolutionism as a world view (since historically that is not the case) 
nor the emphasis on natural selection as the main motive force in 
evolution (since empirically that may not be the case), but rather the 
replacement of a metaphysical view of variation among organisms by a 
materialistic view (Lewontin, 1973). For Darwin, evolution was the 
conversion of the standing variation among individuals within an 
interbreeding group into variation between groups in space and 
time. Such a theory of evolution necessarily takes the variation 
between individuals as of the essence.  Ernst Mayr has many times 
pointed out, especially in Animal Species and Evolution (1963), that 
this emphasis on individual variation as the central reality of the 
living world is the mark of modern evolutionary thought and 
distinguishes it from the typological doctrine of previous times.'' 
1974, pp.3--5.} 
 
Symmetry breaking in language: Curie quote 
On web. 
What is a parameter?  Extracting parameters from ‘control theory’ points (stickleback) 
VO-OV parameter head-first, head-final (selection) 
Read about parameters. 
Graphs.  
Empiricism and internal state (rationalism)‘ 
Conclusion 
 
 
In the domain of language acquisition, variation, and change, this amounts to admitting both 
multiple possible languages – this corresponds to variation at the ‘parental’ level  – and multiple 
learners each of whom acquires a potentially different grammar – the learners and the language 
they develop corresponding to the ‘offspring’ generation.  
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